您好,登錄后才能下訂單哦!
這篇文章主要講解了“C++回溯算法中組合的相關問題怎么解決”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“C++回溯算法中組合的相關問題怎么解決”吧!
回溯算法模板
void backtracking(參數) {
if (終止條件) {
存放結果;
return;
}
for (選擇:本層集合中元素(樹中節點孩子的數量就是集合的大小)) {
處理節點;
backtracking(路徑,選擇列表); // 遞歸
回溯,撤銷處理結果
}
}
回溯問題,最關鍵的是畫出二叉樹,遍歷、剪枝問題都要通過直觀的觀察才能總結
剪枝策略
已經選擇的元素個數:path.size();
還需要的元素個數為: k - path.size();
在集合n中至多要從該起始位置 : n - (k - path.size()) + 1,開始遍歷
class Solution { private: vector<vector<int>> result; vector<int> path; void backtracking(int n,int k,int startIndex){ if(path.size()==k){ result.push_back(path); return; } for(int i=startIndex;i<=n-(k-path.size())+1;i++){ path.push_back(i); backtracking(n,k,i+1); path.pop_back(); } } public: vector<vector<int>> combine(int n, int k) { backtracking(n,k,1); return result; } };
在組合的基礎上,多了一個求和的操作,求和也可以剪枝
class Solution { private: vector<vector<int>> result; vector<int> path; void backtracking(int sum,int k,int n,int startIndex){ if(sum>n) return; if(path.size()==k){ if(sum==n) result.push_back(path); return; } for(int i=startIndex;i<=9-(k-path.size())+1;i++){ path.push_back(i); sum+=i; backtracking(sum,k,n,i+1); sum-=i; path.pop_back(); } } public: vector<vector<int>> combinationSum3(int k, int n) { backtracking(0,k,n,1); return result; } };
本題與組合III的區別在于,不限制組合內數字的個數,且同一個數字可以無限制重復被選取,體現在代碼上就是,向下遞歸的時候,i不變
class Solution { private: vector<int> path; vector<vector<int>> result; void backtracking(vector<int>& candidates, int target,int index,int sum){ if(sum>target) return; if(sum==target){ result.push_back(path); return; } for(int i=index;i<candidates.size();i++){ path.push_back(candidates[i]); sum+=candidates[i]; backtracking(candidates,target,i,sum); sum-=candidates[i]; path.pop_back(); } } public: vector<vector<int>> combinationSum(vector<int>& candidates, int target) { backtracking(candidates,target,0,0); return result; } };
本題和組合總和的區別在于,輸入樣例中含有重復元素時,輸出樣例不能有重復元素
同一條枝干上,元素可以相同;而不同的枝干則不能重復
即:橫向遍歷不能重復、縱向遍歷可以重復
class Solution { private: vector<int> path; vector<vector<int>> result; void backtracking(vector<int>& candidates, int target,int index,int sum){ if(sum>target) return; if(sum==target){ result.push_back(path); return; } for(int i=index;i<candidates.size();i++){ if(i>index&&candidates[i]==candidates[i-1]) continue; path.push_back(candidates[i]); sum+=candidates[i]; backtracking(candidates,target,i+1,sum); sum-=candidates[i]; path.pop_back(); } } public: vector<vector<int>> combinationSum2(vector<int>& candidates, int target) { sort(candidates.begin(),candidates.end()); backtracking(candidates,target,0,0); return result; } };
這題很好的考察了:for循環橫向遍歷、遞歸縱向遍歷的知識點
class Solution { private: const string letterMap[10]={ "", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz" }; public: string path; vector<string> result; void backtracking(string digits,int index){ if(index==digits.size()){ result.push_back(path); return; } int digit=digits[index]-'0'; string letter=letterMap[digit]; for(int i=0;i<letter.size();i++){ path.push_back(letter[i]); backtracking(digits,index+1); path.pop_back(); } } vector<string> letterCombinations(string digits) { if(digits.size()==0) return result; backtracking(digits,0); return result; } };
感謝各位的閱讀,以上就是“C++回溯算法中組合的相關問題怎么解決”的內容了,經過本文的學習后,相信大家對C++回溯算法中組合的相關問題怎么解決這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。