您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關Flink如何實現雙流 join的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
在數據庫中的靜態表上做 OLAP 分析時,兩表 join 是非常常見的操作。同理,在流式處理作業中,有時也需要在兩條流上做 join 以獲得更豐富的信息。Flink DataStream API 為用戶提供了3個算子來實現雙流 join,分別是:
join()
coGroup()
intervalJoin()
從 Kafka 分別接入點擊流和訂單流,并轉化為 POJO。
DataStream<String> clickSourceStream = env .addSource(new FlinkKafkaConsumer011<>( "ods_analytics_access_log", new SimpleStringSchema(), kafkaProps ).setStartFromLatest()); DataStream<String> orderSourceStream = env .addSource(new FlinkKafkaConsumer011<>( "ods_ms_order_done", new SimpleStringSchema(), kafkaProps ).setStartFromLatest()); DataStream<AnalyticsAccessLogRecord> clickRecordStream = clickSourceStream .map(message -> JSON.parseObject(message, AnalyticsAccessLogRecord.class)); DataStream<OrderDoneLogRecord> orderRecordStream = orderSourceStream .map(message -> JSON.parseObject(message, OrderDoneLogRecord.class));
join() 算子提供的語義為"Window join",即按照指定字段和(滾動/滑動/會話)窗口進行 inner join,支持處理時間和事件時間兩種時間特征。以下示例以10秒滾動窗口,將兩個流通過商品 ID 關聯,取得訂單流中的售價相關字段。
clickRecordStream .join(orderRecordStream) .where(record -> record.getMerchandiseId()) .equalTo(record -> record.getMerchandiseId()) .window(TumblingProcessingTimeWindows.of(Time.seconds(10))) .apply(new JoinFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, String>() { @Override public String join(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord) throws Exception { return StringUtils.join(Arrays.asList( accessRecord.getMerchandiseId(), orderRecord.getPrice(), orderRecord.getCouponMoney(), orderRecord.getRebateAmount() ), '\t'); } }) .print().setParallelism(1);
簡單易用。
只有 inner join 肯定還不夠,如何實現 left/right outer join 呢?答案就是利用 coGroup() 算子。它的調用方式類似于 join() 算子,也需要開窗,但是 CoGroupFunction 比 JoinFunction 更加靈活,可以按照用戶指定的邏輯匹配左流和/或右流的數據并輸出。
以下的例子就實現了點擊流 left join 訂單流的功能,是很樸素的 nested loop join 思想(二重循環)。
clickRecordStream .coGroup(orderRecordStream) .where(record -> record.getMerchandiseId()) .equalTo(record -> record.getMerchandiseId()) .window(TumblingProcessingTimeWindows.of(Time.seconds(10))) .apply(new CoGroupFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, Tuple2<String, Long>>() { @Override public void coGroup(Iterable<AnalyticsAccessLogRecord> accessRecords, Iterable<OrderDoneLogRecord> orderRecords, Collector<Tuple2<String, Long>> collector) throws Exception { for (AnalyticsAccessLogRecord accessRecord : accessRecords) { boolean isMatched = false; for (OrderDoneLogRecord orderRecord : orderRecords) { // 右流中有對應的記錄 collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), orderRecord.getPrice())); isMatched = true; } if (!isMatched) { // 右流中沒有對應的記錄 collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), null)); } } } }) .print().setParallelism(1);
join() 和 coGroup() 都是基于窗口做關聯的。但是在某些情況下,兩條流的數據步調未必一致。例如,訂單流的數據有可能在點擊流的購買動作發生之后很久才被寫入,如果用窗口來圈定,很容易 join 不上。所以 Flink 又提供了"Interval join"的語義,按照指定字段以及右流相對左流偏移的時間區間進行關聯,即:
right.timestamp ∈ [left.timestamp + lowerBound; left.timestamp + upperBound]
interval join 也是 inner join,雖然不需要開窗,但是需要用戶指定偏移區間的上下界,并且只支持事件時間。
示例代碼如下。注意在運行之前,需要分別在兩個流上應用 assignTimestampsAndWatermarks() 方法獲取事件時間戳和水印。
clickRecordStream .keyBy(record -> record.getMerchandiseId()) .intervalJoin(orderRecordStream.keyBy(record -> record.getMerchandiseId())) .between(Time.seconds(-30), Time.seconds(30)) .process(new ProcessJoinFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, String>() { @Override public void processElement(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord, Context context, Collector<String> collector) throws Exception { collector.collect(StringUtils.join(Arrays.asList( accessRecord.getMerchandiseId(), orderRecord.getPrice(), orderRecord.getCouponMoney(), orderRecord.getRebateAmount() ), '\t')); } }) .print().setParallelism(1);
由上可見,interval join 與 window join 不同,是兩個 KeyedStream 之上的操作,并且需要調用 between() 方法指定偏移區間的上下界。如果想令上下界是開區間,可以調用 upperBoundExclusive()/lowerBoundExclusive() 方法。
以下是 KeyedStream.process(ProcessJoinFunction) 方法調用的重載方法的邏輯。
public <OUT> SingleOutputStreamOperator<OUT> process( ProcessJoinFunction<IN1, IN2, OUT> processJoinFunction, TypeInformation<OUT> outputType) { Preconditions.checkNotNull(processJoinFunction); Preconditions.checkNotNull(outputType); final ProcessJoinFunction<IN1, IN2, OUT> cleanedUdf = left.getExecutionEnvironment().clean(processJoinFunction); final IntervalJoinOperator<KEY, IN1, IN2, OUT> operator = new IntervalJoinOperator<>( lowerBound, upperBound, lowerBoundInclusive, upperBoundInclusive, left.getType().createSerializer(left.getExecutionConfig()), right.getType().createSerializer(right.getExecutionConfig()), cleanedUdf ); return left .connect(right) .keyBy(keySelector1, keySelector2) .transform("Interval Join", outputType, operator); }
可見是先對兩條流執行 connect() 和 keyBy() 操作,然后利用 IntervalJoinOperator 算子進行轉換。在 IntervalJoinOperator 中,會利用兩個 MapState 分別緩存左流和右流的數據。
private transient MapState<Long, List<BufferEntry<T1>>> leftBuffer; private transient MapState<Long, List<BufferEntry<T2>>> rightBuffer; @Override public void initializeState(StateInitializationContext context) throws Exception { super.initializeState(context); this.leftBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>( LEFT_BUFFER, LongSerializer.INSTANCE, new ListSerializer<>(new BufferEntrySerializer<>(leftTypeSerializer)) )); this.rightBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>( RIGHT_BUFFER, LongSerializer.INSTANCE, new ListSerializer<>(new BufferEntrySerializer<>(rightTypeSerializer)) )); }
其中 Long 表示事件時間戳,List> 表示該時刻到來的數據記錄。當左流和右流有數據到達時,會分別調用 processElement1() 和 processElement2() 方法,它們都調用了 processElement() 方法,代碼如下。
@Override public void processElement1(StreamRecord<T1> record) throws Exception { processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true); } @Override public void processElement2(StreamRecord<T2> record) throws Exception { processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false); } @SuppressWarnings("unchecked") private <THIS, OTHER> void processElement( final StreamRecord<THIS> record, final MapState<Long, List<IntervalJoinOperator.BufferEntry<THIS>>> ourBuffer, final MapState<Long, List<IntervalJoinOperator.BufferEntry<OTHER>>> otherBuffer, final long relativeLowerBound, final long relativeUpperBound, final boolean isLeft) throws Exception { final THIS ourValue = record.getValue(); final long ourTimestamp = record.getTimestamp(); if (ourTimestamp == Long.MIN_VALUE) { throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " + "interval stream joins need to have timestamps meaningful timestamps."); } if (isLate(ourTimestamp)) { return; } addToBuffer(ourBuffer, ourValue, ourTimestamp); for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) { final long timestamp = bucket.getKey(); if (timestamp < ourTimestamp + relativeLowerBound || timestamp > ourTimestamp + relativeUpperBound) { continue; } for (BufferEntry<OTHER> entry: bucket.getValue()) { if (isLeft) { collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp); } else { collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp); } } } long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp; if (isLeft) { internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime); } else { internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime); } }
這段代碼的思路是:
取得當前流 StreamRecord 的時間戳,調用 isLate() 方法判斷它是否是遲到數據(即時間戳小于當前水印值),如是則丟棄。
調用 addToBuffer() 方法,將時間戳和數據一起插入當前流對應的 MapState。
遍歷另外一個流的 MapState,如果數據滿足前述的時間區間條件,則調用 collect() 方法將該條數據投遞給用戶定義的 ProcessJoinFunction 進行處理。collect() 方法的代碼如下,注意結果對應的時間戳是左右流時間戳里較大的那個。
private void collect(T1 left, T2 right, long leftTimestamp, long rightTimestamp) throws Exception { final long resultTimestamp = Math.max(leftTimestamp, rightTimestamp); collector.setAbsoluteTimestamp(resultTimestamp); context.updateTimestamps(leftTimestamp, rightTimestamp, resultTimestamp); userFunction.processElement(left, right, context, collector); }
調用 TimerService.registerEventTimeTimer() 注冊時間戳為 timestamp + relativeUpperBound 的定時器,該定時器負責在水印超過區間的上界時執行狀態的清理邏輯,防止數據堆積。注意左右流的定時器所屬的 namespace 是不同的,具體邏輯則位于 onEventTime() 方法中。
@Override public void onEventTime(InternalTimer<K, String> timer) throws Exception { long timerTimestamp = timer.getTimestamp(); String namespace = timer.getNamespace(); logger.trace("onEventTime @ {}", timerTimestamp); switch (namespace) { case CLEANUP_NAMESPACE_LEFT: { long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound; logger.trace("Removing from left buffer @ {}", timestamp); leftBuffer.remove(timestamp); break; } case CLEANUP_NAMESPACE_RIGHT: { long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp; logger.trace("Removing from right buffer @ {}", timestamp); rightBuffer.remove(timestamp); break; } default: throw new RuntimeException("Invalid namespace " + namespace); } }
感謝各位的閱讀!關于“Flink如何實現雙流 join”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。