您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關使用C++怎么實現一個高精度算法,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
1. 高精度加法
以3479957928375817 + 897259321544245為例:
3479 | 9579 | 2837 | 5817 |
---|---|---|---|
+897 | +2593 | +2154 | +4245 |
= | = | = | = |
4376 | 12172 | 4991 | 10062 |
進位0 | 進位1 | 進位0 | 進位1 |
4377 | 2172 | 4992 | 0062 |
C語言實現代碼如下:
#include <stdio.h> #include <stdlib.h> #include <string.h> #define N 200 //整數乘冪運算函數 int Pow(int a, int b) { int i = 0, result = 1; for(i = 0; i < b; ++i) { result *= a; } return result; } //High Precision Of Addition int main() { char stra[N], strb[N]; //字符串數組,以字符形式儲存兩個大數; int i = 0, step = 4, carry = 0; //step表示塊長,carry為進位位; int lengtha, lengthb, maxlength, resultsize; //maxlength表示stra和strb二者長度較大的那個; int numa[N], numb[N],numc[N]; //依次儲存被加數,加數,和; memset(numa, 0, sizeof(numa)); memset(numb, 0, sizeof(numb)); memset(numc, 0, sizeof(numc)); //初始化為零; scanf("%s%s", stra, strb); lengtha = strlen(stra); lengthb = strlen(strb); //計算兩個大數的長度 //字符數字轉為四位一塊的整數數字 for(i = lengtha-1; i >= 0; --i) { numa[(lengtha-1-i)/step] += (stra[i]-'0')*Pow(10,(lengtha-1-i)%step); } for(i = lengthb-1; i >= 0; --i) { numb[(lengthb-1-i)/step] += (strb[i]-'0')*Pow(10,(lengthb-1-i)%step); } maxlength = lengtha > lengthb ? lengtha : lengthb; //逐塊相加,并進位 for(i = 0; i <= maxlength/step; ++i) { numc[i] = (numa[i] + numb[i])%Pow(10, step) + carry; //計算和 carry = (numa[i] + numb[i])/Pow(10, step); //計算進位 } //計算最后和的塊的總數 resultsize = numc[maxlength/step] > 0 ? maxlength/step : maxlength/step - 1; printf("%d", numc[resultsize]); for(i = resultsize-1; i >= 0; --i) { printf("%04d", numc[i]); //右對齊,補零輸出; } printf("\n"); return 0; }
2. 高精度減法
與加法類似,不同的是要注意正負號和顯示位數的變化。以99999037289799 - 100004642015000為例:
先判斷被減數和減數哪個大,顯然這里減數大,故輸出結果為負數。在用大數減去小數,(若某一塊相減為負數,則要向高位塊借位)如下表
100 | 0046 | 4201 | 5000 |
---|---|---|---|
-99 | -9990 | -3728 | -9799 |
1 | 56 | 473 | 5201 |
借位0 | 借位1 | 借位0 | 借位1 |
0 | 56 | 472 | 5201 |
C語言實現代碼如下:
#include <stdio.h> #include <stdlib.h> #include <string.h> #define N 200 //整數乘冪運算函數 int Pow(int a, int b) { int i = 0, result = 1; for(i = 0; i < b; ++i) { result *= a; } return result; } //High Precision Of Subtraction int main() { char stra[N], strb[N]; //字符串數組,以字符形式儲存兩個大數; int i = 0, step = 4, borrow = 0, mark = 0; //step表示塊長,borrow為借位位, mark為結果符號位; int lengtha, lengthb, maxlength, resultsize; //maxlength表示stra和strb二者長度較大的那個; int numa[N], numb[N],numc[N], *maxnum, *minnum; //依次儲存被減數,減數,和; memset(stra, 0, sizeof(stra)); memset(strb, 0, sizeof(strb)); memset(numa, 0, sizeof(numa)); memset(numb, 0, sizeof(numb)); memset(numc, 0, sizeof(numc)); //初始化為零; scanf("%s%s", stra, strb); lengtha = strlen(stra); lengthb = strlen(strb); //計算兩個大數的長度 maxlength = lengtha >= lengthb ? lengtha : lengthb; //字符數字轉為四位一塊的整數數字 for(i = lengtha-1; i >= 0; --i) { numa[(lengtha-1-i)/step] += (stra[i]-'0')*Pow(10,(lengtha-1-i)%step); } for(i = lengthb-1; i >= 0; --i) { numb[(lengthb-1-i)/step] += (strb[i]-'0')*Pow(10,(lengthb-1-i)%step); } //找出較大的數 maxnum = numa; minnum = numb; mark = 1; for(i = (maxlength-1)/step; i >= 0; --i) { if(numa[i] > numb[i]) { maxnum = numa; minnum = numb; mark = 1; break; } else if(numa[i] < numb[i]) { maxnum = numb; minnum = numa; mark = -1; break; } } //逐塊相減,并借位 for(i = 0; i <= maxlength/step; ++i) { numc[i] = (maxnum[i] - minnum[i] + Pow(10, step) + borrow)%Pow(10,step); //計算差 borrow = (maxnum[i] - minnum[i] + Pow(10, step) + borrow)/Pow(10, step) - 1; //計算借位 } //計算最后和的塊的總數 resultsize = maxlength/step; while(!numc[resultsize]) --resultsize; printf("%d", mark*numc[resultsize]); for(i = resultsize-1; i >= 0; --i) { printf("%04d", numc[i]); //右對齊,補零輸出; } printf("\n"); return 0; }
3. 高精度乘法
乘法可以看作是乘數每一位與被乘數相乘后再相加,以4296556241 x 56241為例:
被乘數 | 42 | 9655 | 6241 |
---|
乘數 | 5 | 6 | 2 | 4 | 1 |
---|
被乘數x乘數 | 42 | 9655 | 6241 |
---|---|---|---|
1 | 42 | 9655 | 6241 |
4 | 168*10 | 38620*10 | 24964*10 |
2 | 84*100 | 19310*100 | 12482*100 |
6 | 252*1000 | 57930*1000 | 37446*1000 |
5 | 210*10000 | 48275*10000 | 31205*10000 |
累加和 | 2362122 | 543006855 | 351000081 |
進位(從低位向高位) | 241 | 54304 | 35100 |
積 | 241 | 6426 | 1955 | 0081 |
---|
C語言實現代碼如下:
#include <stdio.h> #include <stdlib.h> #include <string.h> #define N 200 //整數乘冪運算函數 int Pow(int a, int b) { int i = 0, result = 1; for(i = 0; i < b; ++i) { result *= a; } return result; } //High Precision Of Multiplication int main() { char stra[N], strb[N]; //字符串數組,以字符形式儲存兩個大數; int i = 0, j = 0, k = 0, step = 4, carry = 0; //step表示塊長,carry為進位位; int lengtha, lengthb, resultsize, tmpsize, eachnum; //resultsize儲存塊的總數,eachnum用來儲存乘數的每一位 int numa[N], numb[N], numc[N], tmp[N]; //依次儲存被乘數數&積,乘數; memset(numa, 0, sizeof(numa)); memset(numb, 0, sizeof(numb)); memset(numc, 0, sizeof(numc)); //初始化為零; scanf("%s%s", stra, strb); lengtha = strlen(stra); lengthb = strlen(strb); //計算兩個大數的長度 //將被乘數字符數字轉為四位一塊的整數數字 for(i = lengtha-1; i >= 0; --i) { numa[(lengtha-1-i)/step] += (stra[i]-'0')*Pow(10,(lengtha-1-i)%step); } //將乘數數字字符數字轉為一位一塊的整數數字 for(i = lengthb-1; i >= 0; --i) { numb[lengthb-1-i] = strb[i]-'0'; } resultsize = tmpsize = (lengtha-1)/step; //取乘數的每一位與被乘數的逐塊相乘,并進位; for(i = 0; i < lengthb; ++i) { memcpy(tmp, numa, sizeof(numa)); //將numa數組賦值給tmp數組; k = i/step; //k儲存每一塊需要向高位塊移動的次數; if(k) { for(j = tmpsize; j >= 0; --j) { tmp[j+k] = tmp[j]; tmp[j] = 0; } tmpsize += k; } //乘以乘數每一位擴展成的塊; eachnum = numb[i]*Pow(10, i%step); for(j = 0; j <= tmpsize; ++j) { tmp[j] *= eachnum; } //大數相加 carry = 0; //進位置零; for(j = 0; j <= resultsize; ++j) { numc[j] += tmp[j] + carry; carry = numc[j]/Pow(10,step); numc[j] %= Pow(10, step); } if(carry) { ++resultsize; numc[j] += carry; } } //輸出 printf("%d", numc[resultsize]); for(i = resultsize-1; i >= 0; --i) { printf("%04d", numc[i]); //右對齊,補零輸出; } printf("\n"); return 0; }
4. 高精度除法
高精度除法有兩種,一種是高精度除以低精度,另一種是高精度除以高精度。前者只需將每一塊除以低精度除數即可;后者則考慮用高精度減法來實現,即每次減去高精度除數,直到減到小于除數,則減的次數即為商,剩余的即為余數。
高精度除以低精度
以9876342876 / 343為例:
被除數 | 98 | 7634 | 2876 |
---|
除數 | 343 |
---|
向低位塊進位 | 98 | 137 | 190 |
---|---|---|---|
商 | 0 | 2879 | 4002 |
余數 | 190 |
---|
C語言代碼實現如下:
#include <stdio.h> #include <stdlib.h> #include <string.h> #define N 200 //整數乘冪運算函數 int Pow(int a, int b) { int i = 0, result = 1; for(i = 0; i < b; ++i) { result *= a; } return result; } //High Precision Of division //(1)高精度除以低精度 int main() { char stra[N]; //字符串數組,以字符形式儲存高精度被除數; int i = 0, step = 4, carry = 0; //step表示塊長,carry為高位向低位進位位; int lengtha, resultsize; int numa[N], numb, numc[N], numd; //依次儲存被除數,除數,商, 余數; memset(numa, 0, sizeof(numa)); memset(numc, 0, sizeof(numc)); //初始化為零; scanf("%s%d", stra, &numb); lengtha = strlen(stra); //計算被除數的長度 //字符數字轉為四位一塊的整數數字 for(i = lengtha-1; i >= 0; --i) { numa[(lengtha-1-i)/step] += (stra[i]-'0')*Pow(10,(lengtha-1-i)%step); } carry = 0; //高位向低位進位位置零 resultsize = (lengtha-1)/step; //逐塊相除,高位向低位進位 for(i = resultsize; i >= 0; --i) { numc[i] = (numa[i] + carry*Pow(10,step))/numb; //計算商 carry = (numa[i] + carry*Pow(10,step))%numb; //計算進位 } numd = carry; //最低位塊的余數即為整個除法的余數 //計算最后和的塊的總數 while(!numc[resultsize]) --resultsize; //輸出商 printf("%d", numc[resultsize]); for(i = resultsize-1; i >= 0; --i) { printf("%04d", numc[i]); //右對齊,補零輸出; } //輸出余數 printf("\n%d\n", numd); return 0; }
高精度除以高精度
以176342876 / 3453452為例:
被除數 | 176342876 |
---|---|
- (51 x 除數) | 51 x 3453452 |
余數 | 216824 |
商 | 51 |
C語言代碼實現如下:
#include <stdio.h> #include <stdlib.h> #include <string.h> #define N 200 //整數乘冪運算函數 int Pow(int a, int b) { int i = 0, result = 1; for(i = 0; i < b; ++i) { result *= a; } return result; } //High Precision Of division //(2)高精度除以高精度 int main() { char stra[N], strb[N]; //字符串數組,以字符形式儲存兩個大數; int i = 0, step = 4, borrow = 0; //step表示塊長,borrow為進位位; int lengtha, lengthb, tmpnum, numbsize, numcsize, numdsize, maxsize, mark; //maxlength表示stra和strb二者長度較大的那個; int numa[N], numb[N], numc[N], numd[N]; //依次儲存被除數數,除數數,商,余數; memset(stra, 0, sizeof(stra)); memset(strb, 0, sizeof(strb)); memset(numa, 0, sizeof(numa)); memset(numb, 0, sizeof(numb)); memset(numc, 0, sizeof(numc)); memset(numd, 0, sizeof(numd)); //初始化為零; scanf("%s%s", stra, strb); lengtha = strlen(stra); lengthb = strlen(strb); //計算兩個大數的長度 //字符數字轉為四位一塊的整數數字 for(i = lengtha-1; i >= 0; --i) { numa[(lengtha-1-i)/step] += (stra[i]-'0')*Pow(10,(lengtha-1-i)%step); } for(i = lengthb-1; i >= 0; --i) { numb[(lengthb-1-i)/step] += (strb[i]-'0')*Pow(10,(lengthb-1-i)%step); } memcpy(numd, numa, sizeof(numa)); numbsize = (lengthb-1)/step; numcsize = 0; numdsize = (lengtha-1)/step; do { maxsize = numdsize > numbsize ? numdsize : numbsize; //計算剩余數是否小于除數 mark = 1; for(i = maxsize; i >= 0; --i) { if(numd[i] > numb[i]) { mark = 1; break; } else if(numd[i] < numb[i]) { mark = -1; break; } } //判斷是否余數已經小于除數 if(!(mark+1)) break; borrow = 0; //借位置零; //逐塊相減,并借位 for(i = 0; i <= maxsize; ++i) { tmpnum = (numd[i] - numb[i] + Pow(10, step) + borrow)%Pow(10,step); //計算差 borrow = (numd[i] - numb[i] + Pow(10, step) + borrow)/Pow(10,step) - 1; //計算借位 numd[i] = tmpnum; } while(!numd[numdsize]) --numdsize; //每減一個除數,商加一; borrow = 1; for(i = 0; i <= numcsize; ++i) { numc[i] += borrow; borrow = numc[i]/Pow(10,step); numc[i] %= Pow(10,step); } if(borrow) { ++numcsize; numc[i] += borrow; } }while(1); printf("%d", numc[numcsize]); for(i = numcsize-1; i >= 0; --i) { printf("%04d", numc[i]); //右對齊,補零輸出; } printf("\n"); printf("%d", numd[numdsize]); for(i = numdsize-1; i >= 0; --i) { printf("%04d", numd[i]); //右對齊,補零輸出; } printf("\n"); return 0; }
上述就是小編為大家分享的使用C++怎么實現一個高精度算法了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。