您好,登錄后才能下訂單哦!
這篇文章給大家分享的是有關python和c++怎么實現旋轉矩陣到歐拉角的變換方式的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
在攝影測量學科中,國際攝影測量遵循OPK系統,即是xyz轉角系統,而工業中往往使用zyx轉角系統。
旋轉矩陣的意義:描述相對地面的旋轉情況,yaw-pitch-roll對應zyx對應k,p,w
#include <iostream> #include<stdlib.h> #include<eigen3/Eigen/Core> #include<eigen3/Eigen/Dense> #include<stdlib.h> using namespace std; Eigen::Matrix3d rotationVectorToMatrix(Eigen::Vector3d theta) { Eigen::Matrix3d R_x=Eigen::AngleAxisd(theta(0),Eigen::Vector3d(1,0,0)).toRotationMatrix(); Eigen::Matrix3d R_y=Eigen::AngleAxisd(theta(1),Eigen::Vector3d(0,1,0)).toRotationMatrix(); Eigen::Matrix3d R_z=Eigen::AngleAxisd(theta(2),Eigen::Vector3d(0,0,1)).toRotationMatrix(); return R_z*R_y*R_x; } bool isRotationMatirx(Eigen::Matrix3d R) { int err=1e-6;//判斷R是否奇異 Eigen::Matrix3d shouldIdenity; shouldIdenity=R*R.transpose(); Eigen::Matrix3d I=Eigen::Matrix3d::Identity(); return (shouldIdenity-I).norm()<err?true:false; } int main(int argc, char *argv[]) { Eigen::Matrix3d R; Eigen::Vector3d theta(rand() % 360 - 180.0, rand() % 360 - 180.0, rand() % 360 - 180.0); theta=theta*M_PI/180; cout<<"旋轉向量是:\n"<<theta.transpose()<<endl; R=rotationVectorToMatrix(theta); cout<<"旋轉矩陣是:\n"<<R<<endl; if(! isRotationMatirx(R)){ cout<<"旋轉矩陣--->歐拉角\n"<<R.eulerAngles(2,1,0).transpose()<<endl;//z-y-x順序,與theta順序是x,y,z } else{ assert(isRotationMatirx(R)); } return 0; }
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import cv2 import numpy as np import math import random def isRotationMatrix(R) : Rt = np.transpose(R) shouldBeIdentity = np.dot(Rt, R) I = np.identity(3, dtype = R.dtype) n = np.linalg.norm(I - shouldBeIdentity) return n < 1e-6 def rotationMatrixToEulerAngles(R) : assert(isRotationMatrix(R)) sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) singular = sy < 1e-6 if not singular : x = math.atan2(R[2,1] , R[2,2]) y = math.atan2(-R[2,0], sy) z = math.atan2(R[1,0], R[0,0]) else : x = math.atan2(-R[1,2], R[1,1]) y = math.atan2(-R[2,0], sy) z = 0 return np.array([x, y, z]) def eulerAnglesToRotationMatrix(theta) : R_x = np.array([[1, 0, 0 ], [0, math.cos(theta[0]), -math.sin(theta[0]) ], [0, math.sin(theta[0]), math.cos(theta[0]) ] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ], [0, 1, 0 ], [-math.sin(theta[1]), 0, math.cos(theta[1]) ] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot( R_y, R_x )) return R if __name__ == '__main__' : e = np.random.rand(3) * math.pi * 2 - math.pi R = eulerAnglesToRotationMatrix(e) e1 = rotationMatrixToEulerAngles(R) R1 = eulerAnglesToRotationMatrix(e1) print ("\nInput Euler angles :\n{0}".format(e)) print ("\nR :\n{0}".format(R)) print ("\nOutput Euler angles :\n{0}".format(e1)) print ("\nR1 :\n{0}".format(R1))
感謝各位的閱讀!關于“python和c++怎么實現旋轉矩陣到歐拉角的變換方式”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。