您好,登錄后才能下訂單哦!
這篇“pytorch tensor內所有元素相乘怎么實現”文章的知識點大部分人都不太理解,所以小編給大家總結了以下內容,內容詳細,步驟清晰,具有一定的借鑒價值,希望大家閱讀完這篇文章能有所收獲,下面我們一起來看看這篇“pytorch tensor內所有元素相乘怎么實現”文章吧。
a = torch.Tensor([1,2,3]) print(torch.prod(a))
輸出
tensor(6.)
該操作又稱作 “哈達瑪積”, 簡單來說就是 tensor 元素逐個相乘。這個操作,是通過 * 也就是常規的乘號操作符定義的操作結果。torch.mul 是等價的。
import torch def element_by_element(): x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) return x * y, torch.mul(x, y) element_by_element()
(tensor([ 4, 10, 18]), tensor([ 4, 10, 18]))
這個操作是可以 broad cast 的。
def element_by_element_broadcast(): x = torch.tensor([1, 2, 3]) y = 2 return x * y element_by_element_broadcast()
tensor([2, 4, 6])
torch.matmul: If both tensors are 1-dimensional, the dot product (scalar) is returned.
如果都是1維的,返回的就是 dot product 結果
def vec_dot_product(): x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) return torch.matmul(x, y) vec_dot_product()
tensor(32)
torch.matmul: If both arguments are 2-dimensional, the matrix-matrix product is returned.
如果都是2維,那么就是矩陣乘法的結果返回。與 torch.mm 是等價的,torch.mm 僅僅能處理的是矩陣乘法。
def matrix_multiple(): x = torch.tensor([ [1, 2, 3], [4, 5, 6] ]) y = torch.tensor([ [7, 8], [9, 10], [11, 12] ]) return torch.matmul(x, y), torch.mm(x, y) matrix_multiple()
(tensor([[ 58, 64], [139, 154]]), tensor([[ 58, 64], [139, 154]]))
torch.matmul: If the first argument is 1-dimensional and the second argument is 2-dimensional, a 1 is prepended to its dimension for the purpose of the matrix multiply. After the matrix multiply, the prepended dimension is removed.
如果第一個是 vector, 第二個是 matrix, 會在 vector 中增加一個維度。也就是 vector 變成了 與 matrix 相乘之后,變成 , 在結果中將 維 再去掉。
def vec_matrix(): x = torch.tensor([1, 2, 3]) y = torch.tensor([ [7, 8], [9, 10], [11, 12] ]) return torch.matmul(x, y) vec_matrix()
tensor([58, 64])
同樣的道理, vector會被擴充一個維度。
def matrix_vec(): x = torch.tensor([ [1, 2, 3], [4, 5, 6] ]) y = torch.tensor([ 7, 8, 9 ]) return torch.matmul(x, y) matrix_vec()
tensor([ 50, 122])
def batched_matrix_broadcasted_vector(): x = torch.tensor([ [ [1, 2], [3, 4] ], [ [5, 6], [7, 8] ] ]) print(f"x shape: {x.size()} \n {x}") y = torch.tensor([1, 3]) return torch.matmul(x, y) batched_matrix_broadcasted_vector()
x shape: torch.Size([2, 2, 2]) tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) tensor([[ 7, 15], [23, 31]])
batched matrix x batched matrix def batched_matrix_batched_matrix(): x = torch.tensor([ [ [1, 2, 1], [3, 4, 4] ], [ [5, 6, 2], [7, 8, 0] ] ]) y = torch.tensor([ [ [1, 2], [3, 4], [5, 6] ], [ [7, 8], [9, 10], [1, 2] ] ]) print(f"x shape: {x.size()} \n y shape: {y.size()}") return torch.matmul(x, y) xy = batched_matrix_batched_matrix() print(f"xy shape: {xy.size()} \n {xy}")
x shape: torch.Size([2, 2, 3]) y shape: torch.Size([2, 3, 2]) xy shape: torch.Size([2, 2, 2]) tensor([[[ 12, 16], [ 35, 46]], [[ 91, 104], [121, 136]]])
上面的效果與 torch.bmm 是一樣的。matmul 比 bmm 功能更加強大,但是 bmm 的語義非常明確, bmm 處理的只能是 3維的。
def batched_matrix_batched_matrix_bmm(): x = torch.tensor([ [ [1, 2, 1], [3, 4, 4] ], [ [5, 6, 2], [7, 8, 0] ] ]) y = torch.tensor([ [ [1, 2], [3, 4], [5, 6] ], [ [7, 8], [9, 10], [1, 2] ] ]) print(f"x shape: {x.size()} \n y shape: {y.size()}") return torch.bmm(x, y) xy = batched_matrix_batched_matrix() print(f"xy shape: {xy.size()} \n {xy}")
x shape: torch.Size([2, 2, 3]) y shape: torch.Size([2, 3, 2]) xy shape: torch.Size([2, 2, 2]) tensor([[[ 12, 16], [ 35, 46]], [[ 91, 104], [121, 136]]])
tensordot def tesnordot(): x = torch.tensor([ [1, 2, 1], [3, 4, 4]]) y = torch.tensor([ [7, 8], [9, 10], [1, 2]]) print(f"x shape: {x.size()}, y shape: {y.size()}") return torch.tensordot(x, y, dims=([0], [1])) tesnordot()
x shape: torch.Size([2, 3]), y shape: torch.Size([3, 2]) tensor([[31, 39, 7], [46, 58, 10], [39, 49, 9]])
以上就是關于“pytorch tensor內所有元素相乘怎么實現”這篇文章的內容,相信大家都有了一定的了解,希望小編分享的內容對大家有幫助,若想了解更多相關的知識內容,請關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。