中文字幕av专区_日韩电影在线播放_精品国产精品久久一区免费式_av在线免费观看网站

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python的numpy中有哪些常用的的函數

發布時間:2021-06-21 14:30:49 來源:億速云 閱讀:167 作者:chen 欄目:編程語言

這篇文章主要介紹“python的numpy中有哪些常用的的函數”,在日常操作中,相信很多人在python的numpy中有哪些常用的的函數問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”python的numpy中有哪些常用的的函數”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!

簡介

在NumPy中,多維數組除了基本的算數運算之外,還內置了一些非常有用的函數,可以加快我們的科學計算的速度。

簡單函數

我們先看下比較常見的運算函數,在使用之前,我們先構造一個數組:

arr = np.arange(10)
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

計算數組中元素的開方:

np.sqrt(arr)
array([0.    , 1.    , 1.4142, 1.7321, 2.    , 2.2361, 2.4495, 2.6458,
       2.8284, 3.    ])

自然常數e為底的指數函數:

np.exp(arr)
array([   1.    ,    2.7183,    7.3891,   20.0855,   54.5982,  148.4132,
        403.4288, 1096.6332, 2980.958 , 8103.0839])

取兩個數組的最大值,組成新的數組:

x = np.random.randn(8)
y = np.random.randn(8)
x,y
(array([-2.3594, -0.1995, -1.542 , -0.9707, -1.307 ,  0.2863,  0.378 ,
        -0.7539]),
 array([ 0.3313,  1.3497,  0.0699,  0.2467, -0.0119,  1.0048,  1.3272,
        -0.9193]))
np.maximum(x, y)
array([ 0.3313,  1.3497,  0.0699,  0.2467, -0.0119,  1.0048,  1.3272,
       -0.7539])

返 回浮點數數組的小數和整數部分:

arr = np.random.randn(7) * 5
array([-7.7455,  0.1109,  3.7918, -3.3026,  4.3129, -0.0502,  0.25  ])
remainder, whole_part = np.modf(arr)
(array([-0.7455,  0.1109,  0.7918, -0.3026,  0.3129, -0.0502,  0.25  ]),
 array([-7.,  0.,  3., -3.,  4., -0.,  0.]))

矢量化數組運算

如果要進行數組之間的運算,常用的方法就是進行循環遍歷,但是這樣的效率會比較低。所以Numpy提供了數組之間的數據處理的方法。

先來講解一下 np.meshgrid 這個函數,這個函數是用來快速生成網格點坐標矩陣的。

先看一段坐標點的代碼:

import numpy as np
import matplotlib.pyplot as plt

x = np.array([[0, 1, 2], [0, 1, 2]])
y = np.array([[0, 0, 0], [1, 1, 1]])


plt.plot(x, y,
         color='green',
         marker='.',
         linestyle='')
plt.grid(True)
plt.show()

上面的X是一個二維數組,表示的是坐標點的X軸的位置。

Y也是一個二維數組,表示的是坐標點的Y軸的位置。

看下畫出來的圖像:

python的numpy中有哪些常用的的函數

上面畫出的就是使用X,Y矩陣組合出來的6個坐標點。

上面的X,Y的二維數組是我們手動輸入的,如果坐標上面有大量點的話,手動輸入肯定是不可取的。

于是有了np.meshgrid這個函數。這個函數可以接受兩個一維的數組,然后生成二維的X,Y坐標矩陣。

上面的例子可以改寫為:

x = np.array([0,1,2])
y = np.array([0,1])

xs, ys = np.meshgrid(x, y)
xs,ys
(array([[0, 1, 2],
        [0, 1, 2]]), 
 array([[0, 0, 0],
        [1, 1, 1]]))

可以看到生成的xs和ys和手動輸入是一樣的。

有了網格坐標之后,我們就可以基于網格值來計算一些數據,比如:sqrt(x^2+y^2)sqrt(x2+y2) ,我們不用變量矩陣中所有的數據,只需要直接使用數組進行運算即可:

np.sqrt(xs ** 2 + ys ** 2)

結果:

array([[0.        , 1.        , 2.        ],
       [1.        , 1.41421356, 2.23606798]])

因為xs 和ys本身就是2 * 3 的矩陣,所以結果也是 2 * 3 的矩陣。

條件邏輯表達式

我們可以在構建數組的時候使用條件邏輯表達式:

xarr = np.array([1.1, 1.2, 1.3, 1.4, 1.5])
yarr = np.array([2.1, 2.2, 2.3, 2.4, 2.5])
cond = np.array([True, False, True, True, False])
result = [(x if c else y)  for x, y, c in zip(xarr, yarr, cond)]result
[1.1, 2.2, 1.3, 1.4, 2.5]

更簡單一點,我們可以使用where語句:

result = np.where(cond, xarr, yarr)
result
array([1.1, 2.2, 1.3, 1.4, 2.5])

我們還可以根據where的條件來修改數組的值:

arr = np.random.randn(4, 4)
arr
array([[ 0.7953,  0.1181, -0.7485,  0.585 ],
       [ 0.1527, -1.5657, -0.5625, -0.0327],
       [-0.929 , -0.4826, -0.0363,  1.0954],
       [ 0.9809, -0.5895,  1.5817, -0.5287]])

上面我們構建了一個4 * 4 的數組。

我們可以在where中進行數據的比較,如果大于0,將數據修改成2 ,如果小于0,則將數據修該成-2 :

np.where(arr > 0, 2, -2)
array([[ 2,  2, -2,  2],
       [ 2, -2, -2, -2],
       [-2, -2, -2,  2],
       [ 2, -2,  2, -2]])

統計方法

numpy提供了mean,sum等統計方法:

arr = np.random.randn(5, 4)
arr
arr.mean()
np.mean(arr)
arr.sum()

還可以按維度來統計:

arr.mean(axis=1)
arr.sum(axis=0)

cumsum進行累加計算:

arr = np.array([0, 1, 2, 3, 4, 5, 6, 7])
arr.cumsum()
array([ 0,  1,  3,  6, 10, 15, 21, 28])

cumprod進行累乘計算:

arr = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
arr
arr.cumsum(axis=0)
array([[ 0,  1,  2],
       [ 3,  5,  7],
       [ 9, 12, 15]])
arr.cumprod(axis=1)
array([[  0,   0,   0],
       [  3,  12,  60],
       [  6,  42, 336]])

布爾數組

any用于測試數組中是否存在一個或多個True,而all則檢查數組中所有值是否都是True:

bools = np.array([False, False, True, False])
bools.any()
True
bools.all()
False

排序

使用sort可以對數組進行排序,除了普通排序還可以按照特定的軸來進行排序:

arr = np.random.randn(6)
arr.sort()
array([-2.5579, -1.2943, -0.2972, -0.1516,  0.0765,  0.1608])
arr = np.random.randn(5, 3)
arr
arr.sort(1)
arr
array([[-0.8852, -0.4936, -0.1875],
       [-0.3507, -0.1154,  0.0447],
       [-1.1512, -0.8978,  0.8909],
       [-2.6123, -0.8671,  1.1413],
       [-0.437 ,  0.3475,  0.3836]])

sort(1)指的是按照第二個軸來排序。

文件

可以方便的將數組寫入到文件和從文件中讀出:

arr = np.arange(10)
np.save('some_array', arr)

會將數組存放到some_array.npy文件中,我們可以這樣讀取:

np.load('some_array.npy')

還可以以無壓縮的方式存入多個數組:

np.savez('array_archive.npz', a=arr, b=arr)

讀取:

arch = np.load('array_archive.npz')
arch['b']

如果想要壓縮,可以這樣:

np.savez_compressed('arrays_compressed.npz', a=arr, b=arr)

線性代數

如果我們使用普通的算數符來進行矩陣的運算的話,只是簡單的數組中對應的元素的算數運算。如果我們想做矩陣之間的乘法的時候,可以使用dot。

一個 2 * 3 的矩陣 dot 一個3*2 的矩陣,最終得到一個2 * 2 的矩陣。

x = np.array([[1., 2., 3.], [4., 5., 6.]])
y = np.array([[6., 23.], [-1, 7], [8, 9]])
x
y
x.dot(y)
array([[ 28.,  64.],
       [ 67., 181.]])

或者可以這樣寫:

np.dot(x, y)
array([[ 28.,  64.],
       [ 67., 181.]])

還可以使用 @ 符號:

x @ y
array([[ 28.,  64.],
       [ 67., 181.]])

我們看下都有哪些運算:

乘積運算:

操作符描述
dot(a, b[, out])矩陣點積
linalg.multi_dot(arrays, *[, out])多個矩陣點積
vdot(a, b)向量點積
inner(a, b)兩個數組的內積
outer(a, b[, out])兩個向量的外積
matmul(x1, x2, /[, out, casting, order, …])兩個矩陣的對應位的乘積
tensordot(a, b[, axes])計算沿指定軸的張量點積
einsum(subscripts, *operands[, out, dtype, …])愛因斯坦求和約定
einsum_path(subscripts, *operands[, optimize])通過考慮中間數組的創建,評估einsum表達式的最低成本收縮順序。
linalg.matrix_power(a, n)矩陣的冪運算
kron(a, b)矩陣的Kronecker乘積

分解運算:

操作符描述
linalg.cholesky(a)Cholesky 分解
linalg.qr(a[, mode])計算矩陣的qr因式分解
linalg.svd(a[, full_matrices, compute_uv, …])奇異值分解

本征值和本征向量:

操作描述
linalg.eig(a)計算方陣的特征值和右特征向量。
linalg.eigh(a[, UPLO])返回復數Hermitian(共軛對稱)或實對稱矩陣的特征值和特征向量。
linalg.eigvals(a)計算通用矩陣的特征值。
linalg.eigvalsh(a[, UPLO])計算復數Hermitian(共軛對稱)或實對稱矩陣的特征值。

基準值:

操作描述
linalg.norm(x[, ord, axis, keepdims])矩陣或向量范數
linalg.cond(x[, p])Compute the condition number of a matrix.
linalg.det(a)矩陣行列式
linalg.matrix_rank(M[, tol, hermitian])使用SVD方法返回數組的矩陣秩
linalg.slogdet(a)計算數組行列式的符號和(自然)對數。
trace(a[, offset, axis1, axis2, dtype, out])返回沿數組對角線的和。

求解和反轉:

操作描述
linalg.solve(a, b)求解線性矩陣方程或線性標量方程組。
linalg.tensorsolve(a, b[, axes])對x求解張量方程’a x = b’。
linalg.lstsq(a, b[, rcond])將最小二乘解返回線性矩陣方程
linalg.inv(a)計算矩陣的(乘法)逆。
linalg.pinv(a[, rcond, hermitian])計算矩陣的(Moore-Penrose)偽逆。
linalg.tensorinv(a[, ind])計算N維數組的“逆”。

隨機數

很多時候我們都需要生成隨機數,在NumPy中隨機數的生成非常簡單:

samples = np.random.normal(size=(4, 4))
samples
array([[-2.0016, -0.3718,  1.669 , -0.4386],
       [-0.5397,  0.477 ,  3.2489, -1.0212],
       [-0.5771,  0.1241,  0.3026,  0.5238],
       [ 0.0009,  1.3438, -0.7135, -0.8312]])

上面用normal來得到一個標準正態分布的4×4樣本數組。

使用np.random要比使用Python自帶的隨機數生成器要快得多。

np.random可以指定生成隨機數的種子:

np.random.seed(1234)

numpy.random的數據生成函數使用了全局的隨機種子。要避免 全局狀態,你可以使用numpy.random.RandomState,創建一個 與其它隔離的隨機數生成器:

rng = np.random.RandomState(1234)
rng.randn(10)


到此,關于“python的numpy中有哪些常用的的函數”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

三门县| 隆尧县| 农安县| 屯昌县| 兴安盟| 星座| 桐梓县| 道孚县| 聂荣县| 武宣县| 原平市| 天水市| 汕尾市| 桦南县| 蛟河市| 六枝特区| 建德市| 太白县| 平南县| 望江县| 甘肃省| 喀喇沁旗| 兴安县| 罗甸县| 墨脱县| 库尔勒市| 虹口区| 乌鲁木齐市| 溧水县| 庆云县| 韶关市| 新津县| 丹东市| 库伦旗| 商城县| 儋州市| 瓦房店市| 浠水县| 华安县| 安徽省| 深水埗区|