中文字幕av专区_日韩电影在线播放_精品国产精品久久一区免费式_av在线免费观看网站

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

PHP怎么實現圖的鄰接矩陣

發布時間:2021-06-22 15:29:11 來源:億速云 閱讀:137 作者:小新 欄目:開發技術

這篇文章將為大家詳細講解有關PHP怎么實現圖的鄰接矩陣,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。

本文實例講述了PHP實現圖的鄰接矩陣表示及幾種簡單遍歷算法。分享給大家供大家參考,具體如下:

在web開發中圖這種數據結構的應用比樹要少很多,但在一些業務中也常有出現,下面介紹幾種圖的尋徑算法,并用PHP加以實現.

佛洛依德算法,主要是在頂點集內,按點與點相鄰邊的權重做遍歷,如果兩點不相連則權重無窮大,這樣通過多次遍歷可以得到點到點的最短路徑,邏輯上最好理解,實現也較為簡單,時間復雜度為O(n^3);

迪杰斯特拉算法,OSPF中實現最短路由所用到的經典算法,djisktra算法的本質是貪心算法,不斷的遍歷擴充頂點路徑集合S,一旦發現更短的點到點路徑就替換S中原有的最短路徑,完成所有遍歷后S便是所有頂點的最短路徑集合了.迪杰斯特拉算法的時間復雜度為O(n^2);

克魯斯卡爾算法,在圖內構造最小生成樹,達到圖中所有頂點聯通.從而得到最短路徑.時間復雜度為O(N*logN);

<?php
/**
 * PHP 實現圖鄰接矩陣
 */
class MGraph{
  private $vexs; //頂點數組
  private $arc; //邊鄰接矩陣,即二維數組
  private $arcData; //邊的數組信息
  private $direct; //圖的類型(無向或有向)
  private $hasList; //嘗試遍歷時存儲遍歷過的結點
  private $queue; //廣度優先遍歷時存儲孩子結點的隊列,用數組模仿
  private $infinity = 65535;//代表無窮,即兩點無連接,建帶權值的圖時用,本示例不帶權值
  private $primVexs; //prim算法時保存頂點
  private $primArc; //prim算法時保存邊
  private $krus;//kruscal算法時保存邊的信息
  public function MGraph($vexs, $arc, $direct = 0){
    $this->vexs = $vexs;
    $this->arcData = $arc;
    $this->direct = $direct;
    $this->initalizeArc();
    $this->createArc();
  }
  private function initalizeArc(){
    foreach($this->vexs as $value){
      foreach($this->vexs as $cValue){
        $this->arc[$value][$cValue] = ($value == $cValue ? 0 : $this->infinity);
      }
    }
  }
  //創建圖 $direct:0表示無向圖,1表示有向圖
  private function createArc(){
    foreach($this->arcData as $key=>$value){
      $strArr = str_split($key);
      $first = $strArr[0];
      $last = $strArr[1];
      $this->arc[$first][$last] = $value;
      if(!$this->direct){
        $this->arc[$last][$first] = $value;
      }
    }
  }
  //floyd算法
  public function floyd(){
    $path = array();//路徑數組
    $distance = array();//距離數組
    foreach($this->arc as $key=>$value){
      foreach($value as $k=>$v){
        $path[$key][$k] = $k;
        $distance[$key][$k] = $v;
      }
    }
    for($j = 0; $j < count($this->vexs); $j ++){
      for($i = 0; $i < count($this->vexs); $i ++){
        for($k = 0; $k < count($this->vexs); $k ++){
          if($distance[$this->vexs[$i]][$this->vexs[$k]] > $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]]){
            $path[$this->vexs[$i]][$this->vexs[$k]] = $path[$this->vexs[$i]][$this->vexs[$j]];
            $distance[$this->vexs[$i]][$this->vexs[$k]] = $distance[$this->vexs[$i]][$this->vexs[$j]] + $distance[$this->vexs[$j]][$this->vexs[$k]];
          }
        }
      }
    }
    return array($path, $distance);
  }
  //djikstra算法
  public function dijkstra(){
    $final = array();
    $pre = array();//要查找的結點的前一個結點數組
    $weight = array();//權值和數組
    foreach($this->arc[$this->vexs[0]] as $k=>$v){
      $final[$k] = 0;
      $pre[$k] = $this->vexs[0];
      $weight[$k] = $v;
    }
    $final[$this->vexs[0]] = 1;
    for($i = 0; $i < count($this->vexs); $i ++){
      $key = 0;
      $min = $this->infinity;
      for($j = 1; $j < count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1 && $weight[$temp] < $min){
          $key = $temp;
          $min = $weight[$temp];
        }
      }
      $final[$key] = 1;
      for($j = 0; $j < count($this->vexs); $j ++){
        $temp = $this->vexs[$j];
        if($final[$temp] != 1 && ($min + $this->arc[$key][$temp]) < $weight[$temp]){
          $pre[$temp] = $key;
          $weight[$temp] = $min + $this->arc[$key][$temp];
        }
      }
    }
    return $pre;
  }
  //kruscal算法
  private function kruscal(){
    $this->krus = array();
    foreach($this->vexs as $value){
      $krus[$value] = 0;
    }
    foreach($this->arc as $key=>$value){
      $begin = $this->findRoot($key);
      foreach($value as $k=>$v){
        $end = $this->findRoot($k);
        if($begin != $end){
          $this->krus[$begin] = $end;
        }
      }
    }
  }
  //查找子樹的尾結點
  private function findRoot($node){
    while($this->krus[$node] > 0){
      $node = $this->krus[$node];
    }
    return $node;
  }
  //prim算法,生成最小生成樹
  public function prim(){
    $this->primVexs = array();
    $this->primArc = array($this->vexs[0]=>0);
    for($i = 1; $i < count($this->vexs); $i ++){
      $this->primArc[$this->vexs[$i]] = $this->arc[$this->vexs[0]][$this->vexs[$i]];
      $this->primVexs[$this->vexs[$i]] = $this->vexs[0];
    }
    for($i = 0; $i < count($this->vexs); $i ++){
      $min = $this->infinity;
      $key;
      foreach($this->vexs as $k=>$v){
        if($this->primArc[$v] != 0 && $this->primArc[$v] < $min){
          $key = $v;
          $min = $this->primArc[$v];
        }
      }
      $this->primArc[$key] = 0;
      foreach($this->arc[$key] as $k=>$v){
        if($this->primArc[$k] != 0 && $v < $this->primArc[$k]){
          $this->primArc[$k] = $v;
          $this->primVexs[$k] = $key;
        }
      }
    }
    return $this->primVexs;
  }
  //一般算法,生成最小生成樹
  public function bst(){
    $this->primVexs = array($this->vexs[0]);
    $this->primArc = array();
    next($this->arc[key($this->arc)]);
    $key = NULL;
    $current = NULL;
    while(count($this->primVexs) < count($this->vexs)){
      foreach($this->primVexs as $value){
        foreach($this->arc[$value] as $k=>$v){
          if(!in_array($k, $this->primVexs) && $v != 0 && $v != $this->infinity){
            if($key == NULL || $v < current($current)){
              $key = $k;
              $current = array($value . $k=>$v);
            }
          }
        }
      }
      $this->primVexs[] = $key;
      $this->primArc[key($current)] = current($current);
      $key = NULL;
      $current = NULL;
    }
    return array('vexs'=>$this->primVexs, 'arc'=>$this->primArc);
  }
  //一般遍歷
  public function reserve(){
    $this->hasList = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
      }
      foreach($value as $k=>$v){
        if($v == 1 && !in_array($k, $this->hasList)){
          $this->hasList[] = $k;
        }
      }
    }
    foreach($this->vexs as $v){
      if(!in_array($v, $this->hasList))
        $this->hasList[] = $v;
    }
    return implode($this->hasList);
  }
  //廣度優先遍歷
  public function bfs(){
    $this->hasList = array();
    $this->queue = array();
    foreach($this->arc as $key=>$value){
      if(!in_array($key, $this->hasList)){
        $this->hasList[] = $key;
        $this->queue[] = $value;
        while(!empty($this->queue)){
          $child = array_shift($this->queue);
          foreach($child as $k=>$v){
            if($v == 1 && !in_array($k, $this->hasList)){
              $this->hasList[] = $k;
              $this->queue[] = $this->arc[$k];
            }
          }
        }
      }
    }
    return implode($this->hasList);
  }
  //執行深度優先遍歷
  public function excuteDfs($key){
    $this->hasList[] = $key;
    foreach($this->arc[$key] as $k=>$v){
      if($v == 1 && !in_array($k, $this->hasList))
        $this->excuteDfs($k);
    }
  }
  //深度優先遍歷
  public function dfs(){
    $this->hasList = array();
    foreach($this->vexs as $key){
      if(!in_array($key, $this->hasList))
        $this->excuteDfs($key);
    }
    return implode($this->hasList);
  }
  //返回圖的二維數組表示
  public function getArc(){
    return $this->arc;
  }
  //返回結點個數
  public function getVexCount(){
    return count($this->vexs);
  }
}
$a = array('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i');
$b = array('ab'=>'10', 'af'=>'11', 'bg'=>'16', 'fg'=>'17', 'bc'=>'18', 'bi'=>'12', 'ci'=>'8', 'cd'=>'22', 'di'=>'21', 'dg'=>'24', 'gh'=>'19', 'dh'=>'16', 'de'=>'20', 'eh'=>'7','fe'=>'26');//鍵為邊,值權值
$test = new MGraph($a, $b);
print_r($test->bst());

運行結果:

Array
(
  [vexs] => Array
    (
      [0] => a
      [1] => b
      [2] => f
      [3] => i
      [4] => c
      [5] => g
      [6] => h
      [7] => e
      [8] => d
    )
  [arc] => Array
    (
      [ab] => 10
      [af] => 11
      [bi] => 12
      [ic] => 8
      [bg] => 16
      [gh] => 19
      [he] => 7
      [hd] => 16
    )
)

關于“PHP怎么實現圖的鄰接矩陣”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,使各位可以學到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

php
AI

福贡县| 邮箱| 宁乡县| 泽库县| 海兴县| 凤山市| 沙湾县| 年辖:市辖区| 历史| 德阳市| 安国市| 南雄市| 黑山县| 隆安县| 麻阳| 宿松县| 长顺县| 林西县| 五河县| 玛多县| 尉犁县| 江城| 霸州市| 西藏| 台东县| 富蕴县| 岑巩县| 嘉峪关市| 靖州| 乌鲁木齐县| 沽源县| 湄潭县| 贺州市| 深圳市| 呼和浩特市| 庆元县| 伽师县| 西平县| 竹北市| 辽宁省| 阳信县|