您好,登錄后才能下訂單哦!
這篇文章主要介紹了JVM內存區域的示例分析,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
JVM內存區域
我們在編寫程序時,經常會遇到OOM(out of Memory)以及內存泄漏等問題。為了避免出現這些問題,我們首先必須對JVM的內存劃分有個具體的認識。JVM將內存主要劃分為:方法區、虛擬機棧、本地方法棧、堆、程序計數器。JVM運行時數據區如下:
程序計數器
程序計數器是線程私有的區域,很好理解嘛~,每個線程當然得有個計數器記錄當前執行到那個指令。占用的內存空間小,可以把它看成是當前線程所執行的字節碼的行號指示器。如果線程在執行Java方法,這個計數器記錄的是正在執行的虛擬機字節碼指令地址;如果執行的是Native方法,這個計數器的值為空(Undefined)。此內存區域是唯一一個在Java虛擬機規范中沒有規定任何OutOfMemoryError情況的區域。
Java虛擬機棧
與程序計數器一樣,Java虛擬機棧也是線程私有的。其生命周期與線程相同。如何理解虛擬機棧呢?本質上來講,就是個棧。里面存放的元素叫棧幀,棧幀好像很復雜的樣子,其實它很簡單!它里面存放的是一個函數的上下文,具體存放的是執行的函數的一些數據。執行的函數需要的數據無非就是局部變量表(保存函數內部的變量)、操作數棧(執行引擎計算時需要),方法出口等等。
執行引擎每調用一個函數時,就為這個函數創建一個棧幀,并加入虛擬機棧。換個角度理解,每個函數從調用到執行結束,其實是對應一個棧幀的入棧和出棧。
注意這個區域可能出現的兩種異常:一種是StackOverflowError,當前線程請求的棧深度大于虛擬機所允許的深度時,會拋出這個異常。制造這種異常很簡單:將一個函數反復遞歸自己,最終會出現棧溢出錯誤(StackOverflowError)。另一種異常是OutOfMemoryError異常,當虛擬機棧可以動態擴展時(當前大部分虛擬機都可以),如果無法申請足夠多的內存就會拋出OutOfMemoryError,如何制作虛擬機棧OOM呢,參考一下代碼:
public void stackLeakByThread(){
while(true){
new Thread(){
public void run(){
while(true){
}
}
}.start()
}
}
這段代碼有風險,可能會導致操作系統假死,請謹慎使用~~~
本地方法棧
本地方法棧與虛擬機棧所發揮的作用很相似,他們的區別在于虛擬機棧為執行Java代碼方法服務,而本地方法棧是為Native方法服務。與虛擬機棧一樣,本地方法棧也會拋出StackOverflowError和OutOfMemoryError異常。
Java堆
Java堆可以說是虛擬機中最大一塊內存了。它是所有線程所共享的內存區域,幾乎所有的實例對象都是在這塊區域中存放。當然,睡著JIT編譯器的發展,所有對象在堆上分配漸漸變得不那么“絕對”了。
Java堆是垃圾收集器管理的主要區域。由于現在的收集器基本上采用的都是分代收集算法,所有Java堆可以細分為:新生代和老年代。在細致分就是把新生代分為:Eden空間、From Survivor空間、To Survivor空間。當堆無法再擴展時,會拋出OutOfMemoryError異常。
方法區
方法區存放的是類信息、常量、靜態變量等。方法區是各個線程共享區域,很容易理解,我們在寫Java代碼時,每個線程度可以訪問同一個類的靜態變量對象。由于使用反射機制的原因,虛擬機很難推測那個類信息不再使用,因此這塊區域的回收很難。另外,對這塊區域主要是針對常量池回收,值得注意的是JDK1.7已經把常量池轉移到堆里面了。同樣,當方法區無法滿足內存分配需求時,會拋出OutOfMemoryError。
制造方法區內存溢出,注意,必須在JDK1.6及之前版本才會導致方法區溢出,原因后面解釋,執行之前,可以把虛擬機的參數-XXpermSize和-XX:MaxPermSize限制方法區大小。
List list =new ArrayList();
int i =0;
while(true){
list.add(String.valueOf(i).intern());
}
運行后會拋出java.lang.OutOfMemoryError:PermGen space異常。
解釋一下,String的intern()函數作用是如果當前的字符串在常量池中不存在,則放入到常量池中。上面的代碼不斷將字符串添加到常量池,最終肯定會導致內存不足,拋出方法區的OOM。
下面解釋一下,為什么必須將上面的代碼在JDK1.6之前運行。我們前面提到,JDK1.7后,把常量池放入到堆空間中,這導致intern()函數的功能不同,具體怎么個不同法,且看看下面代碼:
String str1 =new StringBuilder("hua").append("chao").toString();
System.out.println(str1.intern()==str1);
String str2=new StringBuilder("ja").append("va").toString();
System.out.println(str2.intern()==str2);
這段代碼在JDK1.6和JDK1.7運行的結果不同。JDK1.6結果是:false,false ,JDK1.7結果是true, false。原因是:JDK1.6中,intern()方法會吧首次遇到的字符串實例復制到常量池中,返回的也是常量池中的字符串的引用,而StringBuilder創建的字符串實例是在堆上面,所以必然不是同一個引用,返回false。在JDK1.7中,intern不再復制實例,常量池中只保存首次出現的實例的引用,因此intern()返回的引用和由StringBuilder創建的字符串實例是同一個。為什么對str2比較返回的是false呢?這是因為,JVM中內部在加載類的時候,就已經有"java"這個字符串,不符合“首次出現”的原則,因此返回false。
垃圾回收(GC)
JVM的垃圾回收機制中,判斷一個對象是否死亡,并不是根據是否還有對象對其有引用,而是通過可達性分析。對象之間的引用可以抽象成樹形結構,通過樹根(GC Roots)作為起點,從這些樹根往下搜索,搜索走過的鏈稱為引用鏈,當一個對象到GC Roots沒有任何引用鏈相連時,則證明這個對象是不可用的,該對象會被判定為可回收的對象。
那么那些對象可作為GC Roots呢?主要有以下幾種:
1.虛擬機棧(棧幀中的本地變量表)中引用的對象。
2.方法區中類靜態屬性引用的對象。
3.方法區中常量引用的對象
4.本地方法棧中JNI(即一般說的Native方法)引用的對象。
另外,Java還提供了軟引用和弱引用,這兩個引用是可以隨時被虛擬機回收的對象,我們將一些比較占內存但是又可能后面用的對象,比如Bitmap對象,可以聲明為軟引用貨弱引用。但是注意一點,每次使用這個對象時候,需要顯示判斷一下是否為null,以免出錯。
三種常見的垃圾收集算法
1.標記-清除算法
首先,通過可達性分析將可回收的對象進行標記,標記后再統一回收所有被標記的對象,標記過程其實就是可達性分析的過程。這種方法有2個不足點:效率問題,標記和清除兩個過程的效率都不高;另一個是空間問題,標記清除之后會產生大量的不連續的內存碎片。
2.復制算法
為了解決效率問題,復制算法是將內存分為大小相同的兩塊,每次只使用其中一塊。當這塊內存用完了,就將還存活的對象復制到另一塊內存上面。然后再把已經使用過的內存一次清理掉。這使得每次只對半個區域進行垃圾回收,內存分配時也不用考慮內存碎片情況。
但是,這代價實在是讓人無法接受,需要犧牲一般的內存空間。研究發現,大部分對象都是“朝生夕死”,所以不需要安裝1:1比例劃分內存空間,而是將內存分為一塊較大的Eden空間和兩塊較小的Survivor空間,每次使用Eden空間和一塊Survivor空間,默認比例為Eden:Survivor=8:1.新生代區域就是這么劃分,每次實例在Eden和一塊Survivor中分配,回收時,將存活的對象復制到剩下的另一塊Survivor。這樣只有10%的內存會被浪費,但是帶來的效率卻很高。當剩下的Survivor內存不足時,可以去老年代內存進行分配擔保。如何理解分配擔保呢,其實就是,內存不足時,去老年代內存空間分配,然后等新生代內存緩過來了之后,把內存歸還給老年代,保持新生代中的Eden:Survivor=8:1.另外,兩個Survivor分別有自己的名稱:From Survivor、To Survivor。二者身份經常調換,即有時這塊內存與Eden一起參與分配,有時是另一塊。因為他們之間經常相互復制。
3.標記-整理算法
標記整理算法很簡單,就是先標記需要回收的對象,然后把所有存活的對象移動到內存的一端。這樣的好處是避免了內存碎片。
類加載機制
類從被加載到虛擬機內存開始,到卸載出內存為止,整個生命周期包括:加載、驗證、準備、解析、初始化、使用和卸載七個階段。
其中加載、驗證、準備、初始化、和卸載這5個階段的順序是確定的。而解析階段不一定:它在某些情況下可以在初始化階段之后再開始,這是為了支持Java的運行時綁定。
關于初始化:JVM規范明確規定,有且只有5中情況必須執行對類的初始化(加載、驗證、準備自然再此之前要發生):
1.遇到new、getstatic、putstatic、invokestatic,如果類沒有初始化,則必須初始化,這幾條指令分別是指:new新對象、讀取靜態變量、設置靜態變量,調用靜態函數。
2.使用java.lang.reflect包的方法對類進行反射調用時,如果類沒初始化,則需要初始化
3.當初始化一個類時,如果發現父類沒有初始化,則需要先觸發父類初始化。
4.當虛擬機啟動時,用戶需要制定一個執行的主類(包含main函數的類),虛擬機會先初始化這個類。
5.但是用JDK1.7啟的動態語言支持時,如果一個MethodHandle實例最后解析的結果是REF_getStatic、REF_putStatic、Ref_invokeStatic的方法句柄時,并且這個方法句柄所對應的類沒有進行初始化,則要先觸發其初始化。
另外要注意的是:通過子類來引用父類的靜態字段,不會導致子類初始化:
public class SuperClass{
public static int value=123;
static{
System.out.printLn("SuperClass init!");
}
}
public class SubClass extends SuperClass{
static{
System.out.println("SubClass init!");
}
}
public class Test{
public static void main(String[] args){
System.out.println(SubClass.value);
}
}
最后只會打印:SuperClass init!
對應靜態變量,只有直接定義這個字段的類才會被初始化,因此通過子類類引用父類中定義的靜態變量只會觸發父類初始化而不會觸發子類初始化。
通過數組定義來引用類,不會觸發此類的初始化:
public class Test{
public static void main(String[] args){
SuperClass[] sca=new SuperClass[10];
}
}
常量會在編譯階段存入調用者的常量池,本質上并沒有直接引用到定義常量的類,因此不會觸發定義常量的類初始化,示例代碼如下:
public class ConstClass{
public static final String HELLO_WORLD="hello world";
static {
System.out.println("ConstClass init!");
}
}
public class Test{
public static void main(String[] args){
System.out.print(ConstClass.HELLO_WORLD);
}
}
上面代碼不會出現ConstClass init!
加載
加載過程主要做以下3件事
1.通過一個類的全限定名稱來獲取此類的二進制流
2.強這個字節流所代表的靜態存儲結構轉化為方法區的運行時數據結構
3.在內存中生成一個代表這個類的java.lang.Class對象,作為方法區這個類的各種數據訪問入口。
驗證
這個階段主要是為了確保Class文件字節流中包含信息符合當前虛擬機的要求,并且不會出現危害虛擬機自身的安全。
準備
準備階段是正式為類變量分配內存并設置類變量初始值的階段,這些變量所使用的內存都在方法區中分配。首先,這個時候分配內存僅僅包括類變量(被static修飾的變量),而不包括實例變量。實例變量會在對象實例化時隨著對象一起分配在java堆中。其次這里所說的初始值“通常情況下”是數據類型的零值,假設一個類變量定義為
public static int value=123;
那變量value在準備階段后的初始值是0,而不是123,因為還沒有執行任何Java方法,而把value賦值為123是在程序編譯后,存放在類構造函數()方法中。
解析
解析階段是把虛擬機中常量池的符號引用替換為直接引用的過程。
初始化
類初始化時類加載的最后一步,前面類加載過程中,除了加載階段用戶可以通過自定義類加載器參與以外,其余動作都是虛擬機主導和控制。到了初始化階段,才是真正執行類中定義Java程序代碼。
準備階段中,變量已經賦過一次系統要求的初始值,而在初始化階段,根據程序員通過程序制定的主觀計劃初始化類變量。初始化過程其實是執行類構造器()方法的過程。
()方法是由編譯器自動收集類中所有類變量的賦值動作和靜態語句塊中的語句合并產生的。收集的順序是按照語句在源文件中出現的順序。靜態語句塊中只能訪問定義在靜態語句塊之前的變量,定義在它之后的變量可以賦值,但不能訪問。如下所示:
public class Test{
static{
i=0;
System.out.print(i);
}
static int i=1;
}
()方法與類構造函數(或者說實例構造器())不同,他不需要顯式地調用父類構造器,虛擬機會保證子類的()方法執行之前,父類的()已經執行完畢。
類加載器
關于自定義類加載器,和雙親委派模型,這里不再提。
感謝你能夠認真閱讀完這篇文章,希望小編分享的“JVM內存區域的示例分析”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。