您好,登錄后才能下訂單哦!
HTTP 協議是互聯網的基礎協議,也是網頁開發的必備知識,最新版本 HTTP 2 更是讓它成為技術熱點。
本文介紹 HTTP 協議的歷史演變和設計思路。
HTTP 是基于 TCP/IP 協議的應用層協議。它不涉及數據包(packet)傳輸,主要規定了客戶端和服務器之間的通信格式,默認使用80端口。
HTTP是Hyper Text Transfer Protocol(超文本傳輸協議)的縮寫,超文本傳輸協議)是用于從WWW服務器傳輸超文本到本地瀏覽器的傳送協議。它可以使瀏覽器更加高效,使網絡傳輸減少。
HTTP不僅保證計算機正確快速地傳輸超文本文檔,還確定傳輸文檔中的哪一部分,以及哪部分內容首先顯示(如文本先于圖形)等。 HTTP是一個應用層協議,由請求和響應構成,是一個標準的客戶端服務器模型。HTTP是一個無狀態的協議。
—-在TCP/IP協議棧中的位置
HTTP協議通常承載于TCP協議之上,有時也承載于TLS或SSL協議層之上,這個時候,就成了我們常說的HTTPS。如下圖所示:
默認HTTP的端口號為80,HTTPS的端口號為443。
—-HTTP的請求響應模型
HTTP協議永遠都是客戶端發起請求,服務器回送響應。見下圖:
這樣就限制了使用HTTP協議,無法實現在客戶端沒有發起請求的時候,服務器將消息推送給客戶端。 HTTP協議是一個無狀態的協議,同一個客戶端的這次請求和上次請求是沒有對應關系。
—-工作流程
一次HTTP操作稱為一個事務,其工作過程可分為四步:
1)首先客戶機與服務器需要建立連接。只要單擊某個超級鏈接,HTTP的工作開始。
2)建立連接后,客戶機發送一個請求給服務器,請求方式的格式為:統一資源標識符(URL)、協議版本號,后邊是MIME信息包括請求修飾符、客戶機信息和可能的內容。
3)服務器接到請求后,給予相應的響應信息,其格式為一個狀態行,包括信息的協議版本號、一個成功或錯誤的代碼,后邊是MIME信息包括服務器信息、實體信息和可能的內容。
4)客戶端接收服務器所返回的信息通過瀏覽器顯示在用戶的顯示屏上,然后客戶機與服務器斷開連接。 如果在以上過程中的某一步出現錯誤,那么產生錯誤的信息將返回到客戶端,有顯示屏輸出。對于用戶來說,這些過程是由HTTP自己完成的,用戶只要用鼠標點擊,等待信息顯示就可以了。
—-HTTP協議的主要特點可概括如下:
1.支持客戶/服務器模式。
2.簡單快速:客戶向服務器請求服務時,只需傳送請求方法和路徑。請求方法常用的有GET、HEAD、POST。每種方法規定了客戶與服務器聯系的類型不同。由于HTTP協議簡單,使得HTTP服務器的程序規模小,因而通信速度很快。
3.靈活:HTTP允許傳輸任意類型的數據對象。正在傳輸的類型由Content-Type加以標記。
4.無連接:無連接的含義是限制每次連接只處理一個請求。服務器處理完客戶的請求,并收到客戶的應答后,即斷開連接。采用這種方式可以節省傳輸時間。
5.無狀態:HTTP協議是無狀態協議。無狀態是指協議對于事務處理沒有記憶能力。缺少狀態意味著如果后續處理需要前面的信息,則它必須重傳,這樣可能導致每次連接傳送的數據量增大。另一方面,在服務器不需要先前信息時它的應答就較快。
以下是“HTTP 協議的歷史演變和設計思路”部分
最早版本是1991年發布的0.9版。該版本極其簡單,只有一個命令GET。
GET /index.html11
上面命令表示,TCP 連接(connection)建立后,客戶端向服務器請求(request)網頁index.html。
協議規定,服務器只能回應HTML格式的字符串,不能回應別的格式。
Hello World11
服務器發送完畢,就關閉TCP連接。
1996年5月,HTTP/1.0 版本發布,內容大大增加。
首先,任何格式的內容都可以發送。這使得互聯網不僅可以傳輸文字,還能傳輸圖像、視頻、二進制文件。這為互聯網的大發展奠定了基礎。
其次,除了GET命令,還引入了POST命令和HEAD命令,豐富了瀏覽器與服務器的互動手段。
再次,HTTP請求和回應的格式也變了。除了數據部分,每次通信都必須包括頭信息(HTTP header),用來描述一些元數據。
其他的新增功能還包括狀態碼(status code)、多字符集支持、多部分發送(multi-part type)、權限(authorization)、緩存(cache)、內容編碼(content encoding)等。
下面是一個1.0版的HTTP請求的例子。
GET / HTTP/1.0User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5)Accept: */*11
可以看到,這個格式與0.9版有很大變化。
第一行是請求命令,必須在尾部添加協議版本(HTTP/1.0)。后面就是多行頭信息,描述客戶端的情況。
服務器的回應如下。
HTTP/1.0 200 OK Content-Type: text/plainContent-Length: 137582Expires: Thu, 05 Dec 1997 16:00:00 GMTLast-Modified: Wed, 5 August 1996 15:55:28 GMTServer: Apache 0.84Hello World12341234
回應的格式是”頭信息 + 一個空行(\r\n) + 數據”。其中,第一行是”協議版本 + 狀態碼(status code) + 狀態描述”。
關于字符的編碼,1.0版規定,頭信息必須是 ASCII 碼,后面的數據可以是任何格式。因此,服務器回應的時候,必須告訴客戶端,數據是什么格式,這就是Content-Type字段的作用。
下面是一些常見的Content-Type字段的值。
text/plaintext/htmltext/css p_w_picpath/jpeg p_w_picpath/png p_w_picpath/svg+xml audio/mp4 video/mp4application/javascriptapplication/pdfapplication/zipapplication/atom+xml12345678910111213141516171819202122231234567891011121314151617181920212223
這些數據類型總稱為MIME type,每個值包括一級類型和二級類型,之間用斜杠分隔。
除了預定義的類型,廠商也可以自定義類型。
application/vnd.debian.binary-package11
上面的類型表明,發送的是Debian系統的二進制數據包。
MIME type還可以在尾部使用分號,添加參數。
Content-Type: text/html; charset=utf-811
上面的類型表明,發送的是網頁,而且編碼是UTF-8。
客戶端請求的時候,可以使用Accept字段聲明自己可以接受哪些數據格式。
Accept: */*11
上面代碼中,客戶端聲明自己可以接受任何格式的數據。
MIME type不僅用在HTTP協議,還可以用在其他地方,比如HTML網頁。
由于發送的數據可以是任何格式,因此可以把數據壓縮后再發送。Content-Encoding字段說明數據的壓縮方法。
Content-Encoding: gzipContent-Encoding: compressContent-Encoding: deflate11
客戶端在請求時,用Accept-Encoding字段說明自己可以接受哪些壓縮方法。
Accept-Encoding: gzip, deflate11
HTTP/1.0 版的主要缺點是,每個TCP連接只能發送一個請求。發送數據完畢,連接就關閉,如果還要請求其他資源,就必須再新建一個連接。
TCP連接的新建成本很高,因為需要客戶端和服務器三次握手,并且開始時發送速率較慢(slow start)。所以,HTTP 1.0版本的性能比較差。隨著網頁加載的外部資源越來越多,這個問題就愈發突出了。
為了解決這個問題,有些瀏覽器在請求時,用了一個非標準的Connection字段。
Connection: keep-alive11
這個字段要求服務器不要關閉TCP連接,以便其他請求復用。服務器同樣回應這個字段。
Connection: keep-alive11
一個可以復用的TCP連接就建立了,直到客戶端或服務器主動關閉連接。但是,這不是標準字段,不同實現的行為可能不一致,因此不是根本的解決辦法。
1997年1月,HTTP/1.1 版本發布,只比 1.0 版本晚了半年。它進一步完善了 HTTP 協議,一直用到了20年后的今天,直到現在還是最流行的版本。
1.1 版的最大變化,就是引入了持久連接(persistent connection),即TCP連接默認不關閉,可以被多個請求復用,不用聲明Connection: keep-alive
。
客戶端和服務器發現對方一段時間沒有活動,就可以主動關閉連接。不過,規范的做法是,客戶端在最后一個請求時,發送Connection: close,明確要求服務器關閉TCP連接。
Connection: close
目前,對于同一個域名,大多數瀏覽器允許同時建立6個持久連接。
1.1 版還引入了管道機制(pipelining),即在同一個TCP連接里面,客戶端可以同時發送多個請求。這樣就進一步改進了HTTP協議的效率。
舉例來說,客戶端需要請求兩個資源。以前的做法是,在同一個TCP連接里面,先發送A請求,然后等待服務器做出回應,收到后再發出B請求。管道機制則是允許瀏覽器同時發出A請求和B請求,但是服務器還是按照順序,先回應A請求,完成后再回應B請求。
一個TCP連接現在可以傳送多個回應,勢必就要有一種機制,區分數據包是屬于哪一個回應的。這就是Content-length字段的作用,聲明本次回應的數據長度。
Content-Length: 349511
上面代碼告訴瀏覽器,本次回應的長度是3495個字節,后面的字節就屬于下一個回應了。
在1.0版中,Content-Length字段不是必需的,因為瀏覽器發現服務器關閉了TCP連接,就表明收到的數據包已經全了。
使用Content-Length字段的前提條件是,服務器發送回應之前,必須知道回應的數據長度。
對于一些很耗時的動態操作來說,這意味著,服務器要等到所有操作完成,才能發送數據,顯然這樣的效率不高。更好的處理方法是,產生一塊數據,就發送一塊,采用”流模式”(stream)取代”緩存模式”(buffer)。
因此,1.1版規定可以不使用Content-Length字段,而使用”分塊傳輸編碼”(chunked transfer encoding)。只要請求或回應的頭信息有Transfer-Encoding字段,就表明回應將由數量未定的數據塊組成。
Transfer-Encoding: chunked
每個非空的數據塊之前,會有一個16進制的數值,表示這個塊的長度。最后是一個大小為0的塊,就表示本次回應的數據發送完了。下面是一個例子。
HTTP/1.1 200 OKContent-Type: text/plainTransfer-Encoding: chunked25This is the data in the first chunk1Cand this is the second one3con8sequence01234567891012345678910
1.1版還新增了許多動詞方法:PUT、PATCH、HEAD、 OPTIONS、DELETE。
另外,客戶端請求的頭信息新增了Host字段,用來指定服務器的域名。
Host: www.example.com11
有了Host字段,就可以將請求發往同一臺服務器上的不同網站,為虛擬主機的興起打下了基礎。
雖然1.1版允許復用TCP連接,但是同一個TCP連接里面,所有的數據通信是按次序進行的。服務器只有處理完一個回應,才會進行下一個回應。要是前面的回應特別慢,后面就會有許多請求排隊等著。這稱為”隊頭堵塞”(Head-of-line blocking)。
為了避免這個問題,只有兩種方法:一是減少請求數,二是同時多開持久連接。這導致了很多的網頁優化技巧,比如合并腳本和樣式表、將圖片嵌入CSS代碼、域名分片(domain sharding)等等。如果HTTP協議設計得更好一些,這些額外的工作是可以避免的。
2009年,谷歌公開了自行研發的 SPDY 協議,主要解決 HTTP/1.1 效率不高的問題。
這個協議在Chrome瀏覽器上證明可行以后,就被當作 HTTP/2 的基礎,主要特性都在 HTTP/2 之中得到繼承。
2015年,HTTP/2 發布。它不叫 HTTP/2.0,是因為標準委員會不打算再發布子版本了,下一個新版本將是 HTTP/3。
HTTP/1.1 版的頭信息肯定是文本(ASCII編碼),數據體可以是文本,也可以是二進制。HTTP/2 則是一個徹底的二進制協議,頭信息和數據體都是二進制,并且統稱為”幀”(frame):頭信息幀和數據幀。
二進制協議的一個好處是,可以定義額外的幀。HTTP/2 定義了近十種幀,為將來的高級應用打好了基礎。如果使用文本實現這種功能,解析數據將會變得非常麻煩,二進制解析則方便得多。
HTTP/2 復用TCP連接,在一個連接里,客戶端和瀏覽器都可以同時發送多個請求或回應,而且不用按照順序一一對應,這樣就避免了”隊頭堵塞”。
舉例來說,在一個TCP連接里面,服務器同時收到了A請求和B請求,于是先回應A請求,結果發現處理過程非常耗時,于是就發送A請求已經處理好的部分, 接著回應B請求,完成后,再發送A請求剩下的部分。
這樣雙向的、實時的通信,就叫做多工(Multiplexing)。
因為 HTTP/2 的數據包是不按順序發送的,同一個連接里面連續的數據包,可能屬于不同的回應。因此,必須要對數據包做標記,指出它屬于哪個回應。
HTTP/2 將每個請求或回應的所有數據包,稱為一個數據流(stream)。每個數據流都有一個獨一無二的編號。數據包發送的時候,都必須標記數據流ID,用來區分它屬于哪個數據流。另外還規定,客戶端發出的數據流,ID一律為奇數,服務器發出的,ID為偶數。
數據流發送到一半的時候,客戶端和服務器都可以發送信號(RST_STREAM幀),取消這個數據流。1.1版取消數據流的唯一方法,就是關閉TCP連接。這就是說,HTTP/2 可以取消某一次請求,同時保證TCP連接還打開著,可以被其他請求使用。
客戶端還可以指定數據流的優先級。優先級越高,服務器就會越早回應。
HTTP 協議不帶有狀態,每次請求都必須附上所有信息。所以,請求的很多字段都是重復的,比如Cookie和User Agent,一模一樣的內容,每次請求都必須附帶,這會浪費很多帶寬,也影響速度。
HTTP/2
對這一點做了優化,引入了頭信息壓縮機制(header compression)。一方面,頭信息使用gzip或compress壓縮后再發送;另一方面,客戶端和服務器同時維護一張頭信息表,所有字段都會存入這個表,生成一個索引號,以后就不發送同樣字段了,只發送索引號,這樣就提高速度了。
HTTP/2 允許服務器未經請求,主動向客戶端發送資源,這叫做服務器推送(server push)。
常見場景是客戶端請求一個網頁,這個網頁里面包含很多靜態資源。正常情況下,客戶端必須收到網頁后,解析HTML源碼,發現有靜態資源,再發出靜態 資源請求。其實,服務器可以預期到客戶端請求網頁后,很可能會再請求靜態資源,所以就主動把這些靜態資源隨著網頁一起發給客戶端了。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。