中文字幕av专区_日韩电影在线播放_精品国产精品久久一区免费式_av在线免费观看网站

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

C++如何求所有頂點之間的最短路徑

發布時間:2020-07-30 14:06:19 來源:億速云 閱讀:160 作者:小豬 欄目:編程語言

這篇文章主要講解了C++如何求所有頂點之間的最短路徑,內容清晰明了,對此有興趣的小伙伴可以學習一下,相信大家閱讀完之后會有幫助。

一、思路: 不能出現負權值的邊

C++如何求所有頂點之間的最短路徑

用Floyd算法,總的執行時間為O(n的3次方)

k從頂點0一直到頂點n-1,

如果,有頂點i到頂點j之間繞過k,使得兩頂點間的路徑更短,即dist[i][k] + dist[k][j] < dist[i][j],則修改:dist[i][j]

如:(1)當k=0時,

頂點2繞過頂點0到達頂點1,使得路徑為:3+1 < dist[2][1],所以,要修改dist[2][1]=4,同時要修改path[2][1]=path[0][1];

頂點2繞過頂點0到達頂點3,使得路徑為:3+4 < dist[2][3],所以,要修改dist[2][1]=7,同時要修改path[2][3]=path[0][3];

(2)當k=1時,

頂點2繞過頂點1到達頂點3,使得路徑為:2->0->1->3,3+1+2=6 <dist[2][3]=7,所以,要修改dist[2][3]=6,同時要修改path[2][3]=path[1][3];

一直重復上面步驟,直到k=6

二、實現程序:

1.Graph.h:有向圖

#ifndef Graph_h
#define Graph_h
#include <iostream>
using namespace std;
 
const int DefaultVertices = 30;
 
template <class T, class E>
struct Edge { // 邊結點的定義
 int dest; // 邊的另一頂點位置
 E cost; // 表上的權值
 Edge<T, E> *link; // 下一條邊鏈指針
};
 
template <class T, class E>
struct Vertex { // 頂點的定義
 T data; // 頂點的名字
 Edge<T, E> *adj; // 邊鏈表的頭指針
};
 
template <class T, class E>
class Graphlnk {
public:
 const E maxValue = 100000; // 代表無窮大的值(=∞)
 Graphlnk(int sz=DefaultVertices); // 構造函數
 ~Graphlnk(); // 析構函數
 void inputGraph(); // 建立鄰接表表示的圖
 void outputGraph(); // 輸出圖中的所有頂點和邊信息
 T getValue(int i); // 取位置為i的頂點中的值
 E getWeight(int v1, int v2); // 返回邊(v1, v2)上的權值
 bool insertVertex(const T& vertex); // 插入頂點
 bool insertEdge(int v1, int v2, E weight); // 插入邊
 bool removeVertex(int v); // 刪除頂點
 bool removeEdge(int v1, int v2); // 刪除邊
 int getFirstNeighbor(int v); // 取頂點v的第一個鄰接頂點
 int getNextNeighbor(int v,int w); // 取頂點v的鄰接頂點w的下一鄰接頂點
 int getVertexPos(const T vertex); // 給出頂點vertex在圖中的位置
 int numberOfVertices(); // 當前頂點數
private:
 int maxVertices; // 圖中最大的頂點數
 int numEdges; // 當前邊數
 int numVertices; // 當前頂點數
 Vertex<T, E> * nodeTable; // 頂點表(各邊鏈表的頭結點)
};
 
// 構造函數:建立一個空的鄰接表
template <class T, class E>
Graphlnk<T, E>::Graphlnk(int sz) {
 maxVertices = sz;
 numVertices = 0;
 numEdges = 0;
 nodeTable = new Vertex<T, E>[maxVertices]; // 創建頂點表數組
 if(nodeTable == NULL) {
  cerr << "存儲空間分配錯誤!" << endl;
  exit(1);
 }
 for(int i = 0; i < maxVertices; i++)
  nodeTable[i].adj = NULL;
}
 
// 析構函數
template <class T, class E>
Graphlnk<T, E>::~Graphlnk() {
 // 刪除各邊鏈表中的結點
 for(int i = 0; i < numVertices; i++) {
  Edge<T, E> *p = nodeTable[i].adj; // 找到其對應鏈表的首結點
  while(p != NULL) { // 不斷地刪除第一個結點
   nodeTable[i].adj = p->link;
   delete p;
   p = nodeTable[i].adj;
  }
 }
 delete []nodeTable; // 刪除頂點表數組
}
 
// 建立鄰接表表示的圖
template <class T, class E>
void Graphlnk<T, E>::inputGraph() {
 int n, m; // 存儲頂點樹和邊數
 int i, j, k;
 T e1, e2; // 頂點
 E weight; // 邊的權值
 
 cout << "請輸入頂點數和邊數:" << endl;
 cin >> n >> m;
 cout << "請輸入各頂點:" << endl;
 for(i = 0; i < n; i++) {
  cin >> e1;
  insertVertex(e1); // 插入頂點
 }
 
 cout << "請輸入圖的各邊的信息:" << endl;
 i = 0;
 while(i < m) {
  cin >> e1 >> e2 >> weight;
  j = getVertexPos(e1);
  k = getVertexPos(e2);
  if(j == -1 || k == -1)
   cout << "邊兩端點信息有誤,請重新輸入!" << endl;
  else {
   insertEdge(j, k, weight); // 插入邊
   i++;
  }
 } // while
}
 
// 輸出有向圖中的所有頂點和邊信息
template <class T, class E>
void Graphlnk<T, E>::outputGraph() {
 int n, m, i;
 T e1, e2; // 頂點
 E weight; // 權值
 Edge<T, E> *p;
 
 n = numVertices;
 m = numEdges;
 cout << "圖中的頂點數為" << n << ",邊數為" << m << endl;
 for(i = 0; i < n; i++) {
  p = nodeTable[i].adj;
  while(p != NULL) {
   e1 = getValue(i); // 有向邊<i, p->dest>
   e2 = getValue(p->dest);
   weight = p->cost;
   cout << "<" << e1 << ", " << e2 << ", " << weight << ">" << endl;
   p = p->link; // 指向下一個鄰接頂點
  }
 }
}
 
// 取位置為i的頂點中的值
template <class T, class E>
T Graphlnk<T, E>::getValue(int i) {
 if(i >= 0 && i < numVertices)
  return nodeTable[i].data;
 return NULL;
}
 
// 返回邊(v1, v2)上的權值
template <class T, class E>
E Graphlnk<T, E>::getWeight(int v1, int v2) {
 if(v1 != -1 && v2 != -1) {
  if(v1 == v2) // 說明是同一頂點
   return 0;
  Edge<T , E> *p = nodeTable[v1].adj; // v1的第一條關聯的邊
  while(p != NULL && p->dest != v2) { // 尋找鄰接頂點v2
   p = p->link;
  }
  if(p != NULL)
   return p->cost;
 }
 return maxValue; // 邊(v1, v2)不存在,就存放無窮大的值
}
 
// 插入頂點
template <class T, class E>
bool Graphlnk<T, E>::insertVertex(const T& vertex) {
 if(numVertices == maxVertices) // 頂點表滿,不能插入
  return false;
 nodeTable[numVertices].data = vertex; // 插入在表的最后
 numVertices++;
 return true;
}
 
// 插入邊
template <class T, class E>
bool Graphlnk<T, E>::insertEdge(int v1, int v2, E weight) {
 if(v1 == v2) // 同一頂點不插入
  return false;
 if(v1 >= 0 && v1 < numVertices && v2 >= 0 && v2 < numVertices) {
  Edge<T, E> *p = nodeTable[v1].adj; // v1對應的邊鏈表頭指針
  while(p != NULL && p->dest != v2) // 尋找鄰接頂點v2
   p = p->link;
  if(p != NULL) // 已存在該邊,不插入
   return false;
  p = new Edge<T, E>; // 創建新結點
  p->dest = v2;
  p->cost = weight;
  p->link = nodeTable[v1].adj; // 鏈入v1邊鏈表
  nodeTable[v1].adj = p;
  numEdges++;
  return true;
 }
 return false;
}
 
// 有向圖刪除頂點較麻煩
template <class T, class E>
bool Graphlnk<T, E>::removeVertex(int v) {
 if(numVertices == 1 || v < 0 || v > numVertices)
  return false; // 表空或頂點號超出范圍
 
 Edge<T, E> *p, *s;
 // 1.清除頂點v的邊鏈表結點w 邊<v,w>
 while(nodeTable[v].adj != NULL) {
  p = nodeTable[v].adj;
  nodeTable[v].adj = p->link;
  delete p;
  numEdges--; // 與頂點v相關聯的邊數減1
 } // while結束
 // 2.清除<w, v>,與v有關的邊
 for(int i = 0; i < numVertices; i++) {
  if(i != v) { // 不是當前頂點v
   s = NULL;
   p = nodeTable[i].adj;
   while(p != NULL && p->dest != v) {// 在頂點i的鏈表中找v的頂點
    s = p;
    p = p->link; // 往后找
   }
   if(p != NULL) { // 找到了v的結點
    if(s == NULL) { // 說明p是nodeTable[i].adj
     nodeTable[i].adj = p->link;
    } else {
     s->link = p->link; // 保存p的下一個頂點信息
    }
    delete p; // 刪除結點p
    numEdges--; // 與頂點v相關聯的邊數減1
   }
  }
 }
 numVertices--; // 圖的頂點個數減1
 nodeTable[v].data = nodeTable[numVertices].data; // 填補,此時numVertices,比原來numVertices小1,所以,這里不需要numVertices-1
 nodeTable[v].adj = nodeTable[numVertices].adj;
 // 3.要將填補的頂點對應的位置改寫
 for(int i = 0; i < numVertices; i++) {
  p = nodeTable[i].adj;
  while(p != NULL && p->dest != numVertices) // 在頂點i的鏈表中找numVertices的頂點
   p = p->link; // 往后找
  if(p != NULL) // 找到了numVertices的結點
   p->dest = v; // 將鄰接頂點numVertices改成v
 }
 return true;
}
 
// 刪除邊
template <class T, class E>
bool Graphlnk<T, E>::removeEdge(int v1, int v2) {
 if(v1 != -1 && v2 != -1) {
  Edge<T, E> * p = nodeTable[v1].adj, *q = NULL;
  while(p != NULL && p->dest != v2) { // v1對應邊鏈表中找被刪除邊
   q = p;
   p = p->link;
  }
  if(p != NULL) { // 找到被刪除邊結點
   if(q == NULL) // 刪除的結點是邊鏈表的首結點
    nodeTable[v1].adj = p->link;
   else
    q->link = p->link; // 不是,重新鏈接
   delete p;
   return true;
  }
 }
 return false; // 沒有找到結點
}
 
// 取頂點v的第一個鄰接頂點
template <class T, class E>
int Graphlnk<T, E>::getFirstNeighbor(int v) {
 if(v != -1) {
  Edge<T, E> *p = nodeTable[v].adj; // 對應鏈表第一個邊結點
  if(p != NULL) // 存在,返回第一個鄰接頂點
   return p->dest;
 }
 return -1; // 第一個鄰接頂點不存在
}
 
// 取頂點v的鄰接頂點w的下一鄰接頂點
template <class T, class E>
int Graphlnk<T, E>::getNextNeighbor(int v,int w) {
 if(v != -1) {
  Edge<T, E> *p = nodeTable[v].adj; // 對應鏈表第一個邊結點
  while(p != NULL && p->dest != w) // 尋找鄰接頂點w
   p = p->link;
  if(p != NULL && p->link != NULL)
   return p->link->dest; // 返回下一個鄰接頂點
 }
 return -1; // 下一個鄰接頂點不存在
}
 
// 給出頂點vertex在圖中的位置
template <class T, class E>
int Graphlnk<T, E>::getVertexPos(const T vertex) {
 for(int i = 0; i < numVertices; i++)
  if(nodeTable[i].data == vertex)
   return i;
 return -1;
}
 
// 當前頂點數
template <class T, class E>
int Graphlnk<T, E>::numberOfVertices() {
 return numVertices;
}
 
#endif /* Graph_h */

2.Floyd.h

#ifndef Floyd_h
#define Floyd_h
#include "Graph.h"
#include <stack>
 
// Floyd算法
template <class T, class E>
void Floyd(Graphlnk<T, E> &G, E dist[][DefaultVertices], int path[][DefaultVertices]) {
 // Graph是一個帶權有向圖,dist[]是當前求到的從頂點v到頂點j的最短路徑長度,同時用數組
 // path[]存放求到的最短路徑
 // dist[i][j]表示頂點i到頂點j的最短路徑的權值
 int n = G.numberOfVertices(); // 頂點數
 int i, j, k;
 
 for(i = 0; i < n; i++) { // 矩陣dist與path初始化
  for(j = 0; j < n; j++) {
   dist[i][j] = G.getWeight(i, j);
   if(i != j && dist[i][j] < G.maxValue)
    path[i][j] = i; // 從頂點i到j的最短路徑初始化,j的上一個頂點為i
   else
    path[i][j] = -1; // 沒有<i,j>的邊
  }
 }
 for(k = 0; k < n; k++) { // 有n個頂點,需要進行n次更新dist(k)和path(k)
  for(i = 0; i < n; i++) {
   for(j = 0; j < n; j++) {
    if(dist[i][k] + dist[k][j] < dist[i][j]) {
     dist[i][j] = dist[i][k] + dist[k][j];
     path[i][j] = path[k][j]; // 縮短路徑長度,繞過k到j
    }
   }
  }
 }
}
 
// 從path數組讀取最短路徑的算法
template <class T, class E>
void printShortestPath(Graphlnk<T, E> &G, E dist[][DefaultVertices], int path[][DefaultVertices]) {
 int i, j, k, n = G.numberOfVertices();
 stack<int> st; // 記憶路徑
 
 for(i = 0; i < n; i++) {
  for(j = 0; j < n; j++) {
   if(i != j) { // 如果不是頂點自身
    cout << "從頂點" << G.getValue(i) << "到頂點" << G.getValue(j) << "的最短路徑為:";
    if(path[i][j] == -1) { // 表示兩者之間不存在通路
     cout << "頂點" << G.getValue(i) << "到頂點" << G.getValue(j) << "不存在路徑!" << endl;
    } else { // 存在路徑
     // 要把頂點存到棧中,倒過來輸出路徑
     k = j;
     do {
      k = path[i][k];
      st.push(k); // 把頂點k壓入棧中
     }while(k != i);
     while(st.empty() == false) { // 當棧不空時
      k = st.top(); // 退棧
      st.pop();
      cout << G.getValue(k) << "->";
     }
     cout << G.getValue(j) << ",長度為:" << dist[i][j] << endl;
    }
   }
  } // for內循環
 } // for外循環
}
#endif /* Floyd_h */

3.main.cpp

/*
 測試數據:
 4 8
 0 1 2 3
 0 1 1
 0 3 4
 1 2 9
 1 3 2
 2 0 3
 2 1 5
 2 3 8
 3 2 6
 */
 
#include "Floyd.h"
 
int main(int argc, const char * argv[]) {
 Graphlnk<char, int> G; // 聲明圖對象
 int dist[DefaultVertices][DefaultVertices], path[DefaultVertices][DefaultVertices];
 
 // 創建圖
 G.inputGraph();
 cout << "圖的信息如下:" << endl;
 G.outputGraph();
 // 求所有頂點之間的最短路徑
 Floyd(G, dist, path);
 // 輸出各個頂點之間的最短路徑
 printShortestPath(G, dist, path);
 return 0;
}

測試結果:

C++如何求所有頂點之間的最短路徑

看完上述內容,是不是對C++如何求所有頂點之間的最短路徑有進一步的了解,如果還想學習更多內容,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

炉霍县| 星座| 江北区| 高台县| 塔城市| 区。| 喀什市| 仁寿县| 沿河| 海阳市| 剑河县| 台北市| 盘山县| 南通市| 南安市| 兴化市| 德兴市| 新沂市| 宁武县| 唐山市| 荔波县| 潮州市| 辉县市| 瑞昌市| 根河市| 民勤县| 奎屯市| 吉首市| 长垣县| 玉树县| 兴宁市| 和田市| 颍上县| 万宁市| 高清| 婺源县| 珠海市| 河东区| 徐州市| 武陟县| 沁阳市|