您好,登錄后才能下訂單哦!
本文實例為大家分享了Python生成樹形圖案的具體代碼,供大家參考,具體內容如下
先看一下效果,見下圖。
上面這顆大樹是使用Python + Tkinter繪制的,主要原理為使用分形畫樹干、樹枝,最終葉節點上畫上綠色圓圈代表樹葉。當然,為了看起來更真實,繪制過程中也加入了一些隨機變化,比如樹枝會稍微有些扭曲而不是一條直線,分叉的角度、長短等都會隨機地作一些偏移等。
以下是完整源代碼:
# -*- coding: utf-8 -*- import Tkinter import sys, random, math class Point(object): def __init__(self, x, y): self.x = x self.y = y def __str__(self): return "<Point>: (%f, %f)" % (self.x, self.y) class Branch(object): def __init__(self, bottom, top, branches, level = 0): self.bottom = bottom self.top = top self.level = level self.branches = branches self.children = [] def __str__(self): s = "Top: %s, Bottom: %s, Children Count: %d" % / (self.top, self.bottom, len(self.children)) return s def nextGen(self, n = -1, rnd = 1): if n <= 0: n = self.branches if rnd == 1: n = random.randint(n / 2, n * 2) if n <= 0: n = 1 dx = self.top.x - self.bottom.x dy = self.top.y - self.bottom.y r = 0.20 + random.random() * 0.2 if self.top.x == self.bottom.x: # 如果是一條豎線 x = self.top.x y = dy * r + self.bottom.y elif self.top.y == self.bottom.y: # 如果是一條橫線 x = dx * r + self.bottom.x y = self.top.y else: x = dx * r y = x * dy / dx x += self.bottom.x y += self.bottom.y oldTop = self.top self.top = Point(x, y) a = math.pi / (2 * n) for i in range(n): a2 = -a * (n - 1) / 2 + a * i - math.pi a2 *= 0.9 + random.random() * 0.2 self.children.append(self.mkNewBranch(self.top, oldTop, a2)) def mkNewBranch(self, bottom, top, a): dx1 = top.x - bottom.x dy1 = top.y - bottom.y r = 0.9 + random.random() * 0.2 c = math.sqrt(dx1 ** 2 + dy1 ** 2) * r if dx1 == 0: a2 = math.pi / 2 else: a2 = math.atan(dy1 / dx1) if (a2 < 0 and bottom.y > top.y) / or (a2 > 0 and bottom.y < top.y) / : a2 += math.pi b = a2 - a dx2 = c * math.cos(b) dy2 = c * math.sin(b) newTop = Point(dx2 + bottom.x, dy2 + bottom.y) return Branch(bottom, newTop, self.branches, self.level + 1) class Tree(object): def __init__(self, root, canvas, bottom, top, branches = 3, depth = 3): self.root = root self.canvas = canvas self.bottom = bottom self.top = top self.branches = branches self.depth = depth self.new() def gen(self, n = 1): for i in range(n): self.getLeaves() for node in self.leaves: node.nextGen() self.show() def new(self): self.leavesCount = 0 self.branch = Branch(self.bottom, self.top, self.branches) self.gen(self.depth) print "leaves count: %d" % self.leavesCount def chgDepth(self, d): self.depth += d if self.depth < 0: self.depth = 0 if self.depth > 10: self.depth = 10 self.new() def chgBranch(self, d): self.branches += d if self.branches < 1: self.branches = 1 if self.branches > 10: self.branches = 10 self.new() def getLeaves(self): self.leaves = [] self.map(self.findLeaf) def findLeaf(self, node): if len(node.children) == 0: self.leaves.append(node) def show(self): for i in self.canvas.find_all(): self.canvas.delete(i) self.map(self.drawNode) self.canvas.tag_raise("leaf") def exit(self, evt): sys.exit(0) def map(self, func = lambda node: node): # 遍歷樹 children = [self.branch] while len(children) != 0: newChildren = [] for node in children: func(node) newChildren.extend(node.children) children = newChildren def drawNode(self, node): self.line2( # self.canvas.create_line( node.bottom.x, node.bottom.y, node.top.x, node.top.y, fill = "#100", width = 1.5 ** (self.depth - node.level), tags = "branch level_%d" % node.level, ) if len(node.children) == 0: # 畫葉子 self.leavesCount += 1 self.canvas.create_oval( node.top.x - 3, node.top.y - 3, node.top.x + 3, node.top.y + 3, fill = "#090", tag = "leaf", ) self.canvas.update() def line2(self, x0, y0, x1, y1, width = 1, fill = "#000", minDist = 10, tags = ""): dots = midDots(x0, y0, x1, y1, minDist) dots2 = [] for i in range(len(dots) - 1): dots2.extend([dots[i].x, dots[i].y, dots[i + 1].x, dots[i + 1].y]) self.canvas.create_line( dots2, fill = fill, width = width, smooth = True, tags = tags, ) def midDots(x0, y0, x1, y1, d): dots = [] dx, dy, r = x1 - x0, y1 - y0, 0 if dx != 0: r = float(dy) / dx c = math.sqrt(dx ** 2 + dy ** 2) n = int(c / d) + 1 for i in range(n): if dx != 0: x = dx * i / n y = x * r else: x = dx y = dy * i / n if i > 0: x += d * (0.5 - random.random()) * 0.25 y += d * (0.5 - random.random()) * 0.25 x += x0 y += y0 dots.append(Point(x, y)) dots.append(Point(x1, y1)) return dots if __name__ == "__main__": root = Tkinter.Tk() root.title("Tree") gw, gh = 800, 600 canvas = Tkinter.Canvas(root, width = gw, height = gh, ) canvas.pack() tree = Tree(root, canvas, Point(gw / 2, gh - 20), Point(gw / 2, gh * 0.2), / branches = 2, depth = 8) root.bind("n", lambda evt: tree.new()) root.bind("=", lambda evt: tree.chgDepth(1)) root.bind("+", lambda evt: tree.chgDepth(1)) root.bind("-", lambda evt: tree.chgDepth(-1)) root.bind("b", lambda evt: tree.chgBranch(1)) root.bind("c", lambda evt: tree.chgBranch(-1)) root.bind("q", tree.exit) root.mainloop()
因為每次生成的樹都是隨機的,所以你生成的樹和上圖會不太一樣,可能會更為枝繁葉茂,也可能會看起來才剛剛發芽。程序中綁定了若干快捷鍵,比如“n”是隨機產生一顆新的樹,“q”是退出程序。另外還有一些不太常用的快捷鍵,如“+”/“-”是增加/減少樹的深度,“b”/“c”分別代表更多/更少的分叉,需要注意的是,增加深度或分叉可能需要更多的計算時間。
從這次樹形圖案的繪制過程中,我也有一些有趣的發現,比如,樹枝上某一處的橫截面寬度與它與樹根之間的距離似乎呈一種指數函數的關系。如用H表示樹的總高度,h表示樹枝上某一點的高度,w表示這一點橫截面的寬度,那么w與h之間似乎存在這樣一種關系:w = a * b ^ (H - h) + c,這兒a、b、c都是常數。當然,這只是一個猜測,因為繪制的過程中我發現當w與h滿足這樣關系時畫出來的圖案看起來最“自然”,這個問題或許下次可以再深入研究一下。
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。