您好,登錄后才能下訂單哦!
這種方法假設樣本點在光滑的流形上,這一方法的計算數據的低維表達,局部近鄰信息被最優的保存。以這種方式,可以得到一個能反映流形的幾何結構的解。
步驟一:構建一個圖G=(V,E),其中V={vi,i=1,2,3…n}是頂點的集合,E={eij}是連接頂點的vi和vj邊,圖的每一個節點vi與樣本集X中的一個點xi相關。如果xi,xj相距較近,我們就連接vi,vj。也就是說在各自節點插入一個邊eij,如果Xj在xi的k領域中,k是定義參數。
步驟二:每個邊都與一個權值Wij相對應,沒有連接點之間的權值為0,連接點之間的權值:
步驟三:令 ,實現廣義本征分解:
使 是最小的m+1個本征值。忽略與 =0相關的本征向量,選取另外m個本征向量即為降維后的向量。
1、python實現拉普拉斯降維
def laplaEigen(dataMat,k,t): m,n=shape(dataMat) W=mat(zeros([m,m])) D=mat(zeros([m,m])) for i in range(m): k_index=knn(dataMat[i,:],dataMat,k) for j in range(k): sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] sqDiffVector=array(sqDiffVector)**2 sqDistances = sqDiffVector.sum() W[i,k_index[j]]=math.exp(-sqDistances/t) D[i,i]+=W[i,k_index[j]] L=D-W Dinv=np.linalg.inv(D) X=np.dot(D.I,L) lamda,f=np.linalg.eig(X) return lamda,f def knn(inX, dataSet, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = array(diffMat)**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() return sortedDistIndicies[0:k] dataMat, color = make_swiss_roll(n_samples=2000) lamda,f=laplaEigen(dataMat,11,5.0) fm,fn =shape(f) print 'fm,fn:',fm,fn lamdaIndicies = argsort(lamda) first=0 second=0 print lamdaIndicies[0], lamdaIndicies[1] for i in range(fm): if lamda[lamdaIndicies[i]].real>1e-5: print lamda[lamdaIndicies[i]] first=lamdaIndicies[i] second=lamdaIndicies[i+1] break print first, second redEigVects = f[:,lamdaIndicies] fig=plt.figure('origin') ax1 = fig.add_subplot(111, projection='3d') ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) fig=plt.figure('lowdata') ax2 = fig.add_subplot(111) ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) plt.show()
2、拉普拉斯降維實驗
用如下參數生成實驗數據存在swissdata.dat里面:
def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): #Generate a swiss roll dataset. t = 1.5 * np.pi * (1 + 2 * random.rand(1, n_samples)) x = t * np.cos(t) y = 83 * random.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * random.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t
實驗結果如下:
以上這篇python實現拉普拉斯特征圖降維示例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。