中文字幕av专区_日韩电影在线播放_精品国产精品久久一区免费式_av在线免费观看网站

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

關于java并發編程的介紹

發布時間:2020-04-25 16:56:44 來源:億速云 閱讀:158 作者:小新 欄目:編程語言

今天小編給大家分享的是關于java并發編程的介紹,相信很多人都不太了解,為了讓大家更加了解java并發編程,所以給大家總結了以下內容,一起往下看吧。一定會有所收獲的哦。

一.synchronized的缺陷

synchronized是java中的一個關鍵字,也就是說是Java語言內置的特性。那么為什么會出現Lock呢?

如果一個代碼塊被synchronized修飾了,當一個線程獲取了對應的鎖,并執行該代碼塊時,其他線程便只能一直等待,等待獲取鎖的線程釋放鎖,而這里獲取鎖的線程釋放鎖只會有兩種情況:

1)獲取鎖的線程執行完了該代碼塊,然后線程釋放對鎖的占有;

2)線程執行發生異常,此時JVM會讓線程自動釋放鎖。

推薦:java基礎教程

那么如果這個獲取鎖的線程由于要等待IO或者其他原因(比如調用sleep方法)被阻塞了,但是又沒有釋放鎖,其他線程便只能干巴巴地等待,試想一下,這多么影響程序執行效率。

因此就需要有一種機制可以不讓等待的線程一直無期限地等待下去(比如只等待一定的時間或者能夠響應中斷),通過Lock就可以辦到。

再舉個例子:當有多個線程讀寫文件時,讀操作和寫操作會發生沖突現象,寫操作和寫操作會發生沖突現象,但是讀操作和讀操作不會發生沖突現象。

但是采用synchronized關鍵字來實現同步的話,就會導致一個問題:

如果多個線程都只是進行讀操作,所以當一個線程在進行讀操作時,其他線程只能等待無法進行讀操作。

因此就需要一種機制來使得多個線程都只是進行讀操作時,線程之間不會發生沖突,通過Lock就可以辦到。

另外,通過Lock可以知道線程有沒有成功獲取到鎖。這個是synchronized無法辦到的。

總結一下,也就是說Lock提供了比synchronized更多的功能。但是要注意以下幾點:

1)Lock不是Java語言內置的,synchronized是Java語言的關鍵字,因此是內置特性。Lock是一個類,通過這個類可以實現同步訪問;

2)Lock和synchronized有一點非常大的不同,采用synchronized不需要用戶去手動釋放鎖,當synchronized方法或者synchronized代碼塊執行完之后,系統會自動讓線程釋放對鎖的占用;而Lock則必須要用戶去手動釋放鎖,如果沒有主動釋放鎖,就有可能導致出現死鎖現象。

二.java.util.concurrent.locks包下常用的類

下面我們就來探討一下java.util.concurrent.locks包中常用的類和接口。

1.Lock

首先要說明的就是Lock,通過查看Lock的源碼可知,Lock是一個接口:

public interface Lock {
    void lock();
    void lockInterruptibly() throws InterruptedException;
    boolean tryLock();
    boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    void unlock();
    Condition newCondition();
}

下面來逐個講述Lock接口中每個方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用來獲取鎖的。unLock()方法是用來釋放鎖的。newCondition()這個方法暫且不在此講述,會在后面的線程協作一文中講述。

在Lock中聲明了四個方法來獲取鎖,那么這四個方法有何區別呢?

首先lock()方法是平常使用得最多的一個方法,就是用來獲取鎖。如果鎖已被其他線程獲取,則進行等待。

由于在前面講到如果采用Lock,必須主動去釋放鎖,并且在發生異常時,不會自動釋放鎖。因此一般來說,使用Lock必須在try{}catch{}塊中進行,并且將釋放鎖的操作放在finally塊中進行,以保證鎖一定被被釋放,防止死鎖的發生。通常使用Lock來進行同步的話,是以下面這種形式去使用的:

Lock lock = ...;
lock.lock();
try{
    //處理任務
}catch(Exception ex){
     
}finally{
    lock.unlock();   //釋放鎖
}

tryLock()方法是有返回值的,它表示用來嘗試獲取鎖,如果獲取成功,則返回true,如果獲取失敗(即鎖已被其他線程獲取),則返回false,也就說這個方法無論如何都會立即返回。在拿不到鎖時不會一直在那等待。

tryLock(long time, TimeUnit unit)方法和tryLock()方法是類似的,只不過區別在于這個方法在拿不到鎖時會等待一定的時間,在時間期限之內如果還拿不到鎖,就返回false。如果如果一開始拿到鎖或者在等待期間內拿到了鎖,則返回true。

所以,一般情況下通過tryLock來獲取鎖時是這樣使用的:

Lock lock = ...;
if(lock.tryLock()) {
     try{
         //處理任務
     }catch(Exception ex){
         
     }finally{
         lock.unlock();   //釋放鎖
     } 
}else {
    //如果不能獲取鎖,則直接做其他事情
}

lockInterruptibly()方法比較特殊,當通過這個方法去獲取鎖時,如果線程正在等待獲取鎖,則這個線程能夠響應中斷,即中斷線程的等待狀態。

也就是說,當兩個線程同時通過lock.lockInterruptibly()想獲取某個鎖時,假若此時線程A獲取到了鎖,而線程B只有在等待,那么對線程B調用threadB.interrupt()方法能夠中斷線程B的等待過程。

由于lockInterruptibly()的聲明中拋出了異常,所以lock.lockInterruptibly()必須放在try塊中或者在調用lockInterruptibly()的方法外聲明拋出InterruptedException。

因此lockInterruptibly()一般的使用形式如下:

public void method() throws InterruptedException {
    lock.lockInterruptibly();
    try {  
     //.....
    }
    finally {
        lock.unlock();
    }  
}

注意,當一個線程獲取了鎖之后,是不會被interrupt()方法中斷的。因為本身在前面的文章中講過單獨調用interrupt()方法不能中斷正在運行過程中的線程,只能中斷阻塞過程中的線程。

因此當通過lockInterruptibly()方法獲取某個鎖時,如果不能獲取到,只有進行等待的情況下,是可以響應中斷的。

而用synchronized修飾的話,當一個線程處于等待某個鎖的狀態,是無法被中斷的,只有一直等待下去。

2.ReentrantLock

ReentrantLock,意思是“可重入鎖”,關于可重入鎖的概念在下一節講述。ReentrantLock是唯一實現了Lock接口的類,并且ReentrantLock提供了更多的方法。下面通過一些實例看具體看一下如何使用ReentrantLock。

例子1,lock()的正確使用方法

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        Lock lock = new ReentrantLock();    //注意這個地方
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了鎖");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+"釋放了鎖");
            lock.unlock();
        }
    }
}

輸出結果:

Thread-0得到了鎖
Thread-1得到了鎖
Thread-0釋放了鎖
Thread-1釋放了鎖

在insert方法中的lock變量是局部變量,每個線程執行該方法時都會保存一個副本,那么理所當然每個線程執行到lock.lock()處獲取的是不同的鎖,所以就不會發生沖突。

知道了原因改起來就比較容易了,只需要將lock聲明為類的屬性即可。

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意這個地方
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        lock.lock();
        try {
            System.out.println(thread.getName()+"得到了鎖");
            for(int i=0;i<5;i++) {
                arrayList.add(i);
            }
        } catch (Exception e) {
            // TODO: handle exception
        }finally {
            System.out.println(thread.getName()+"釋放了鎖");
            lock.unlock();
        }
    }
}

這樣就是正確地使用Lock的方法了。

例子2,tryLock()的使用方法

public class Test {
    private ArrayList<Integer> arrayList = new ArrayList<Integer>();
    private Lock lock = new ReentrantLock();    //注意這個地方
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.insert(Thread.currentThread());
            };
        }.start();
    }  
     
    public void insert(Thread thread) {
        if(lock.tryLock()) {
            try {
                System.out.println(thread.getName()+"得到了鎖");
                for(int i=0;i<5;i++) {
                    arrayList.add(i);
                }
            } catch (Exception e) {
                // TODO: handle exception
            }finally {
                System.out.println(thread.getName()+"釋放了鎖");
                lock.unlock();
            }
        } else {
            System.out.println(thread.getName()+"獲取鎖失敗");
        }
    }
}

輸出結果:

Thread-0得到了鎖
Thread-1獲取鎖失敗
Thread-0釋放了鎖

例子3,lockInterruptibly()響應中斷的使用方法:

public class Test {
    private Lock lock = new ReentrantLock();   
    public static void main(String[] args)  {
        Test test = new Test();
        MyThread thread1 = new MyThread(test);
        MyThread thread2 = new MyThread(test);
        thread1.start();
        thread2.start();
         
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        thread2.interrupt();
    }  
     
    public void insert(Thread thread) throws InterruptedException{
        lock.lockInterruptibly();   //注意,如果需要正確中斷等待鎖的線程,必須將獲取鎖放在外面,然后將InterruptedException拋出
        try {  
            System.out.println(thread.getName()+"得到了鎖");
            long startTime = System.currentTimeMillis();
            for(    ;     ;) {
                if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                    break;
                //插入數據
            }
        }
        finally {
            System.out.println(Thread.currentThread().getName()+"執行finally");
            lock.unlock();
            System.out.println(thread.getName()+"釋放了鎖");
        }  
    }
}
 
class MyThread extends Thread {
    private Test test = null;
    public MyThread(Test test) {
        this.test = test;
    }
    @Override
    public void run() {
         
        try {
            test.insert(Thread.currentThread());
        } catch (InterruptedException e) {
            System.out.println(Thread.currentThread().getName()+"被中斷");
        }
    }
}

運行之后,發現thread2能夠被正確中斷。

3.ReadWriteLock

ReadWriteLock也是一個接口,在它里面只定義了兩個方法:

public interface ReadWriteLock {
    /**
     * Returns the lock used for reading.
     *
     * @return the lock used for reading.
     */
    Lock readLock();
 
    /**
     * Returns the lock used for writing.
     *
     * @return the lock used for writing.
     */
    Lock writeLock();
}

一個用來獲取讀鎖,一個用來獲取寫鎖。也就是說將文件的讀寫操作分開,分成2個鎖來分配給線程,從而使得多個線程可以同時進行讀操作。下面的ReentrantReadWriteLock實現了ReadWriteLock接口。

4.ReentrantReadWriteLock

ReentrantReadWriteLock里面提供了很多豐富的方法,不過最主要的有兩個方法:readLock()和writeLock()用來獲取讀鎖和寫鎖。

下面通過幾個例子來看一下ReentrantReadWriteLock具體用法。

假如有多個線程要同時進行讀操作的話,先看一下synchronized達到的效果:

public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
     
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
    }  
     
    public synchronized void get(Thread thread) {
        long start = System.currentTimeMillis();
        while(System.currentTimeMillis() - start <= 1) {
            System.out.println(thread.getName()+"正在進行讀操作");
        }
        System.out.println(thread.getName()+"讀操作完畢");
    }
}

這段程序的輸出結果會是,直到thread1執行完讀操作之后,才會打印thread2執行讀操作的信息。

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0讀操作完畢

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1讀操作完畢

而改成用讀寫鎖的話:

public class Test {
    private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
     
    public static void main(String[] args)  {
        final Test test = new Test();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
        new Thread(){
            public void run() {
                test.get(Thread.currentThread());
            };
        }.start();
         
    }  
     
    public void get(Thread thread) {
        rwl.readLock().lock();
        try {
            long start = System.currentTimeMillis();
             
            while(System.currentTimeMillis() - start <= 1) {
                System.out.println(thread.getName()+"正在進行讀操作");
            }
            System.out.println(thread.getName()+"讀操作完畢");
        } finally {
            rwl.readLock().unlock();
        }
    }
}

此時打印的結果為:

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0正在進行讀操作

Thread-1正在進行讀操作

Thread-0讀操作完畢

Thread-1讀操作完畢

說明thread1和thread2在同時進行讀操作。

這樣就大大提升了讀操作的效率。

不過要注意的是,如果有一個線程已經占用了讀鎖,則此時其他線程如果要申請寫鎖,則申請寫鎖的線程會一直等待釋放讀鎖。

如果有一個線程已經占用了寫鎖,則此時其他線程如果申請寫鎖或者讀鎖,則申請的線程會一直等待釋放寫鎖。

關于ReentrantReadWriteLock類中的其他方法感興趣的朋友可以自行查閱API文檔。

5.Lock和synchronized的選擇

總結來說,Lock和synchronized有以下幾點不同:

1)Lock是一個接口,而synchronized是Java中的關鍵字,synchronized是內置的語言實現;

2)synchronized在發生異常時,會自動釋放線程占有的鎖,因此不會導致死鎖現象發生;而Lock在發生異常時,如果沒有主動通過unLock()去釋放鎖,則很可能造成死鎖現象,因此使用Lock時需要在finally塊中釋放鎖;

3)Lock可以讓等待鎖的線程響應中斷,而synchronized卻不行,使用synchronized時,等待的線程會一直等待下去,不能夠響應中斷;

4)通過Lock可以知道有沒有成功獲取鎖,而synchronized卻無法辦到。

5)Lock可以提高多個線程進行讀操作的效率。

在性能上來說,如果競爭資源不激烈,兩者的性能是差不多的,而當競爭資源非常激烈時(即有大量線程同時競爭),此時Lock的性能要遠遠優于synchronized。所以說,在具體使用時要根據適當情況選擇。

三.鎖的相關概念介紹

在前面介紹了Lock的基本使用,這一節來介紹一下與鎖相關的幾個概念。

1.可重入鎖

如果鎖具備可重入性,則稱作為可重入鎖。像synchronized和ReentrantLock都是可重入鎖,可重入性在我看來實際上表明了鎖的分配機制:基于線程的分配,而不是基于方法調用的分配。舉個簡單的例子,當一個線程執行到某個synchronized方法時,比如說method1,而在method1中會調用另外一個synchronized方法method2,此時線程不必重新去申請鎖,而是可以直接執行方法method2。

看下面這段代碼就明白了:

class MyClass {
    public synchronized void method1() {
        method2();
    }
     
    public synchronized void method2() {
         
    }
}

上述代碼中的兩個方法method1和method2都用synchronized修飾了,假如某一時刻,線程A執行到了method1,此時線程A獲取了這個對象的鎖,而由于method2也是synchronized方法,假如synchronized不具備可重入性,此時線程A需要重新申請鎖。但是這就會造成一個問題,因為線程A已經持有了該對象的鎖,而又在申請獲取該對象的鎖,這樣就會線程A一直等待永遠不會獲取到的鎖。

而由于synchronized和Lock都具備可重入性,所以不會發生上述現象。

2.可中斷鎖

可中斷鎖:顧名思義,就是可以相應中斷的鎖。

在Java中,synchronized就不是可中斷鎖,而Lock是可中斷鎖。

如果某一線程A正在執行鎖中的代碼,另一線程B正在等待獲取該鎖,可能由于等待時間過長,線程B不想等待了,想先處理其他事情,我們可以讓它中斷自己或者在別的線程中中斷它,這種就是可中斷鎖。

在前面演示lockInterruptibly()的用法時已經體現了Lock的可中斷性。

3.公平鎖

公平鎖即盡量以請求鎖的順序來獲取鎖。比如同是有多個線程在等待一個鎖,當這個鎖被釋放時,等待時間最久的線程(最先請求的線程)會獲得該所,這種就是公平鎖。

非公平鎖即無法保證鎖的獲取是按照請求鎖的順序進行的。這樣就可能導致某個或者一些線程永遠獲取不到鎖。

在Java中,synchronized就是非公平鎖,它無法保證等待的線程獲取鎖的順序。

而對于ReentrantLock和ReentrantReadWriteLock,它默認情況下是非公平鎖,但是可以設置為公平鎖。

看一下這2個類的源代碼就清楚了:

關于java并發編程的介紹

在ReentrantLock中定義了2個靜態內部類,一個是NotFairSync,一個是FairSync,分別用來實現非公平鎖和公平鎖。

我們可以在創建ReentrantLock對象時,通過以下方式來設置鎖的公平性:

ReentrantLock lock = new ReentrantLock(true);

如果參數為true表示為公平鎖,為fasle為非公平鎖。默認情況下,如果使用無參構造器,則是非公平鎖。

關于java并發編程的介紹

另外在ReentrantLock類中定義了很多方法,比如:

isFair()        //判斷鎖是否是公平鎖

isLocked()    //判斷鎖是否被任何線程獲取了

isHeldByCurrentThread()   //判斷鎖是否被當前線程獲取了

hasQueuedThreads()   //判斷是否有線程在等待該鎖

在ReentrantReadWriteLock中也有類似的方法,同樣也可以設置為公平鎖和非公平鎖。不過要記住,ReentrantReadWriteLock并未實現Lock接口,它實現的是ReadWriteLock接口。

4.讀寫鎖

讀寫鎖將對一個資源(比如文件)的訪問分成了2個鎖,一個讀鎖和一個寫鎖。

正因為有了讀寫鎖,才使得多個線程之間的讀操作不會發生沖突。

ReadWriteLock就是讀寫鎖,它是一個接口,ReentrantReadWriteLock實現了這個接口。

可以通過readLock()獲取讀鎖,通過writeLock()獲取寫鎖。

上面已經演示過了讀寫鎖的使用方法,在此不再贅述。

關于關于java并發編程的介紹就分享到這里了,希望以上內容可以對大家有一定的參考價值,可以學以致用。如果喜歡本篇文章,不妨把它分享出去讓更多的人看到。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

竹溪县| 尼玛县| 太湖县| 铁岭县| 泽库县| 永靖县| 海南省| 绍兴市| 乌苏市| 罗山县| 安国市| 临邑县| 朔州市| 福建省| 比如县| 灌云县| 象州县| 聂拉木县| 武强县| 乐昌市| 抚宁县| 五常市| 云安县| 保靖县| 玉山县| 信丰县| 常熟市| 建平县| 嘉峪关市| 车险| 阿勒泰市| 丰都县| 咸宁市| 虎林市| 股票| 渭源县| 东安县| 高尔夫| 得荣县| 通榆县| 凤山市|